The Genetic Code and Other Theories

  • PDF / 12,835,298 Bytes
  • 354 Pages / 441 x 666 pts Page_size
  • 32 Downloads / 212 Views

DOWNLOAD

REPORT


Horst Rauchfuss

Chemical Evolution and the Origin of Life Translated by

Terence N. Mitchell

123

Author Prof. Dr. Horst Rauchfuss Sand˚akergatan 5 432 37 Varberg Sweden [email protected] Translator Prof. Dr. Terence N. Mitchell Universit¨at Dortmund Fachbereich Chemie 44221 Dortmund Germany

ISBN: 978-3-540-78822-5

e-ISBN: 978-3-540-78823-2

Library of Congress Control Number: 2008929511 c 2008 Springer-Verlag Berlin Heidelberg  This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: J.A. Piliero Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com

Foreword

How did life begin on the early Earth? We know that life today is driven by the universal laws of chemistry and physics. By applying these laws over the past fifty years, enormous progress has been made in understanding the molecular mechanisms that are the foundations of the living state. For instance, just a decade ago, the first human genome was published, all three billion base pairs. Using X-ray diffraction data from crystals, we can see how an enzyme molecule or a photosynthetic reaction center steps through its catalytic function. We can even visualize a ribosome, central to all life, translate genetic information into a protein. And we are just beginning to understand how molecular interactions regulate thousands of simultaneous reactions that continuously occur even in the simplest forms of life. New words have appeared that give a sense of this wealth of knowledge: The genome, the proteome, the metabolome, the interactome. But we can’t be too smug. We must avoid the mistake of the physicist who, as the twentieth century began, stated confidently that we knew all there was to know about physics, that science just needed to clean up a few dusty corners. Then came relativity, quantum theory, the Big Bang, and now dark matter, dark energy and string theory. Similarly in the life sciences, the more we learn, the better we understand how little we really know. There remains a vast landscape to explore, with great questions remaining. One such question is the focus of this book. The problem of the origin of life can be a black hole for researchers: If you get too close, you can disappear from sight. Only a few pioneering scientists, perhaps a