The HDL from septic-ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung

  • PDF / 5,528,431 Bytes
  • 13 Pages / 595.276 x 790.866 pts Page_size
  • 54 Downloads / 182 Views

DOWNLOAD

REPORT


Open Access

RESEARCH

The HDL from septic‑ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung injury induced by cecal ligation and puncture (CLP) in mice Liu Yang1,2, Sijie Liu1, Silu Han1, Yuhan Hu1, Zhipeng Wu1, Xiaoqian Shi3, Baosen Pang1,2,3, Yingmin Ma1,2* and Jiawei Jin1,2,3* 

Abstract  Background:  Septic-acute respiratory distress syndrome (ARDS), characterized by the acute lung injury (ALI) secondary to aberrant systemic inflammatory response, has high morbidity and mortality. Despite increased understanding of ALI pathogenesis, the therapies to prevent lung dysfunction underlying systemic inflammatory disorder remain elusive. The high density lipoprotein (HDL) has critical protective effects in sepsis and its dysfunction has a manifested contribution to septic organ failure. However, the adverse changes in HDL composition and function in septic-ARDS patients are large unknown. Methods:  To investigate HDL remodeling in septic-ARDS, we analyzed the changes of HDL composition from 40 patients with septic-ARDS (A-HDL) and 40 matched normal controls (N-HDL). To determine the deleterious functional remodeling of HDL, A-HDL or N-HDL was administrated to C57BL/6 and apoA-I knock-out (KO) mice after cecal ligation and puncture (CLP) procedure. Mouse lung microvascular endothelial cells (MLECs) were further treated by these HDLs to investigate whether the adverse effects of A-HDL were associated with endothelial dysfunction. Results:  Septic-ARDS patients showed significant changes of HDL composition, accompanied with significantly decreased HDL-C. We further indicated that A-HDL treatment aggravated CLP induced ALI. Intriguingly, these deleterious effects of A-HDL were associated with pulmonary endothelial dysfunction, rather than the increased plasma lipopolysaccharide (LPS). Further in vitro results demonstrated the direct effects of A-HDL on MLECs, including increased endothelial permeability, enhanced expressions of adhesion proteins and pro-inflammatory cytokines via activating NF-κB signaling and decreased junction protein expression. Conclusions:  Our results depicted the remodeling of HDL composition in sepsis, which predisposes lung to ARDS via inducing ECs dysfunction. These results also demonstrated the importance of circulating HDL in regulating alveolar homeostasis.

*Correspondence: [email protected]; [email protected] 1 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, No. 5 Jingyuan road, Beijing Chaoyang Hospital Jingxi Branch, Beijing, China Full list of author information is available at the end of the article © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.