The Mathematics of Minkowski Space-Time With an Introduction to Comm

Hyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the b

  • PDF / 1,956,200 Bytes
  • 267 Pages / 481.889 x 680.315 pts Page_size
  • 97 Downloads / 163 Views

DOWNLOAD

REPORT


Advisory Editorial Board Leonid Bunimovich (Georgia Institute of Technology, Atlanta, USA) Benoît Perthame (Ecole Normale Supérieure, Paris, France) Laurent Saloff-Coste (Cornell University, Rhodes Hall, USA) Igor Shparlinski (Macquarie University, New South Wales, Australia) Wolfgang Sprössig (TU Bergakademie, Freiberg, Germany) Cédric Villani (Ecole Normale Supérieure, Lyon, France)

Francesco Catoni Dino Boccaletti Roberto Cannata Vincenzo Catoni Enrico Nichelatti Paolo Zampetti

The Mathematics of

Minkowski Space-Time

With an Introduction to Commutative Hypercomplex Numbers

Birkhäuser Verlag Basel . Boston . Berlin

$XWKRUV )UDQFHVFR&DWRQL   9LD9HJOLD   5RPD   Italy     Dino Boccaletti 'LSDUWLPHQWRGL0DWHPDWLFD 8QLYHUVLWjGL5RPD²/D6DSLHQ]D³ 3LD]]DOH$OGR0RUR  5RPD   Italy HPDLOERFFDOHWWL#XQLURPDLW 5REHUWR&DQQDWD   (1($&5&DVDFFLD  9LD$QJXLOODUHVH  5RPD   Italy HPDLOFDQQDWD#FDVDFFLDHQHDLW

  

  





   

   





   

   





9LQFHQ]R&DWRQL 9LD9HJOLD 5RPD Italy HPDLOYMQFHQ]R#\DKRRLW (QULFR1LFKHODWWL (1($&5&DVDFFLD 9LD$QJXLOODUHVH 5RPD Italy HPDLOQLFKHODWWL#FDVDFFLDHQHDLW 3DROR=DPSHWWL (1($&5&DVDFFLD 9LD$QJXLOODUHVH 5RPD Italy HPDLO]DPSHWWL#FDVDFFLDHQHDLW

0DWKHPDWLFDO6XEMHFW&ODVVL½FDWLRQ*(*4$$ % /LEUDU\RI&RQJUHVV&RQWURO1XPEHU Bibliographic information published by Die Deutsche Bibliothek 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD½H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKH,QWHUQHWDWKWWSGQEGGEGH!

,6%1%LUNKlXVHU9HUODJ$*%DVHOÀ%RVWRQÀ%HUOLQ 7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUWRIWKH PDWHULDOLVFRQFHUQHGVSHFL½FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRILOOXVWUD WLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR½OPVRULQRWKHUZD\VDQGVWRUDJHLQ data banks. For any kind of use permission of the copyright owner must be obtained. ‹%LUNKlXVHU9HUODJ$* %DVHOÀ%RVWRQÀ%HUOLQ 32%R[&+%DVHO6ZLW]HUODQG Part of Springer Science+Business Media 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&)’ 3ULQWHGLQ*HUPDQ\ ,6%1    

 

 

H,6%1 ZZZELUNKDXVHUFK

Non omnes arbusta iuvant humilesque myricae To our friend and colleague Mario Lizzi, who always strove for a non-humdrum life, for his fundamental help in all the steps of our research.

Preface This book arises from original research of the authors on hypercomplex numbers and their applications ([8] and [15]–[23]). Their research concerns extensions to more general number systems of both well-established applications of complex numbers and of functions of a complex variable. Before introducing the contents of the book, we briefly recall the epistemological relevance of Number in