The Need for Quantum Mechanics
Quantum mechanics was initially invented because classical mechanics, thermodynamics and electrodynamics provided no means to explain the properties of atoms, electrons, and electromagnetic radiation. Furthermore, it became clear after the introduction of
- PDF / 588,807 Bytes
- 24 Pages / 439.36 x 666.15 pts Page_size
- 34 Downloads / 247 Views
The Need for Quantum Mechanics
Quantum mechanics was initially invented because classical mechanics, thermodynamics and electrodynamics provided no means to explain the properties of atoms, electrons, and electromagnetic radiation. Furthermore, it became clear after the introduction of Schrödinger’s equation and the quantization of Maxwell’s equations that we cannot explain any physical property of matter and radiation without the use of quantum theory. We will see a lot of evidence for this in the following chapters. However, in the present chapter we will briefly and selectively review the early experimental observations and discoveries which led to the development of quantum mechanics over a period of intense research between 1900 and 1928.
1.1 Electromagnetic Spectra and Evidence for Discrete Energy Levels The first evidence that classical physics was incomplete appeared in unexpected properties of electromagnetic spectra. Thin gases of atoms or molecules emit line spectra which contradict the fact that a classical system of electric charges can oscillate at any frequency, and therefore can emit radiation of any frequency. This was a major scientific puzzle from the 1850s until the inception of the Schrödinger equation in 1926. Contrary to a thin gas, a hot body does emit a continuous spectrum, but even those spectra were still puzzling because the shape of heat radiation spectra could not be explained by classical thermodynamics and electrodynamics. In fact, classical physics provided no means at all to predict any sensible shape for the spectrum of a heat source! But at last, hot bodies do emit a continuous spectrum and therefore, from a classical point of view, their spectra are not quite as strange and unexpected as line spectra. It is therefore not surprising that the first real clues for a solution © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics, https://doi.org/10.1007/978-3-030-57870-1_1
1
2
1 The Need for Quantum Mechanics
to the puzzles of electromagnetic spectra emerged when Max Planck figured out a way to calculate the spectra of heat sources under the simple, but classically extremely counterintuitive assumption that the energy in heat radiation of frequency f is quantized in integer multiples of a minimal energy quantum hf , E = nhf,
n ∈ N.
(1.1)
The constant h that Planck had introduced to formulate this equation became known as Planck’s constant and it could be measured from the shape of heat radiation spectra. A modern value is h = 6.626 × 10−34 J · s = 4.136 × 10−15 eV · s. We will review the puzzle of heat radiation and Planck’s solution in the next section, because Planck’s calculation is instructive and important for the understanding of incandescent light sources and it illustrates in a simple way how quantization of energy levels yields results which are radically different from predictions of classical physics. Albert Einstein then pointed out that Eq
Data Loading...