The potential impact of future climate on the distribution of European yew ( Taxus baccata L.) in the Hyrcanian Forest r
- PDF / 3,108,595 Bytes
- 12 Pages / 595.276 x 790.866 pts Page_size
- 105 Downloads / 181 Views
ORIGINAL PAPER
The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran) Kourosh Ahmadi 1,2,3 & Seyed Jalil Alavi 1 & Ghavamudin Zahedi Amiri 4 & Seyed Mohsen Hosseini 1 & Josep M. Serra-Diaz 2,5 & Jens-Christian Svenning 2,3 Received: 23 June 2019 / Revised: 12 April 2020 / Accepted: 14 April 2020 # ISB 2020
Abstract The Hyrcanian Forest region is rich in relict species, and endemic and endangered species. Although there are concerns about climate change, its influence on tree species in the Hyrcanian forests in the north of Iran is still unidentified. Taxus baccata is among the few conifer species found in the region, and the present study aims to evaluate the potential impact of climate change on the distribution of T. baccata. For this purpose, we used ensemble species distribution modeling with ten algorithms and based on two geographic extents (global and regional) and climate data for different climate change scenarios. For the regional extent, we calibrated the models in Hyrcanian forests including the three provinces in the north of Iran. For the global extent, we calibrated the models on the whole range distribution of T. baccata. In both cases, we applied the models to predict the distribution of T. baccata in northern Iran under current, 2050, and 2070 climates. In regional extent modeling, precipitation of coldest quarter and in global extent modeling temperature seasonality emerged as the most important variables. Present environmental suitability estimates indicated that the suitable area for T. baccata in Hyrcanian forests is 5.89 × 103 km2 (regional modeling) to 9.74 × 103 km2 (global modeling). The modeling suggests that climate change under representative concentration pathways (RCP) 8.5 is likely to lead to strong suitability reductions in the region, with just between 0.63 × 103 km2 (regional modeling) and 0.57 × 103 km2 (global modeling) suitable area in 2070. Hence, T. baccata risks losing most currently suitable areas in the Hyrcanian forests under climate change. The results of the present study suggest there should be focus on conservation of areas predicted to remain suitable through near-future climate change and provide an estimate of the availability of suitable areas for the regeneration of T. baccata and its use in reforestation. Keywords Species distribution models . European yew . Hyrcanian forest . Conservation . Climate change
Introduction * Seyed Jalil Alavi [email protected] 1
Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
2
Department of Biology, Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
3
Department of Biology, Section for Ecoinformatics and Biodiversity, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
4
Department of Forestry, Faculty of Natural Resources, University of Tehran, Karaj, Iran
5
Université de Lorraine, Agro
Data Loading...