The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for
- PDF / 1,085,283 Bytes
- 13 Pages / 595.276 x 790.866 pts Page_size
- 16 Downloads / 171 Views
(2020) 11:88
RESEARCH
Open Access
The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs Hailiang Song1, Qin Zhang2 and Xiangdong Ding1*
Abstract Background: Different production systems and climates could lead to genotype-by-environment (G × E) interactions between populations, and the inclusion of G × E interactions is becoming essential in breeding decisions. The objective of this study was to investigate the performance of multi-trait models in genomic prediction in a limited number of environments with G × E interactions. Results: In total, 2,688 and 1,384 individuals with growth and reproduction phenotypes, respectively, from two Yorkshire pig populations with similar genetic backgrounds were genotyped with the PorcineSNP80 panel. Single- and multi-trait models with genomic best linear unbiased prediction (GBLUP) and BayesC π were implemented to investigate their genomic prediction abilities with 20 replicates of five-fold cross-validation. Our results regarding between-environment genetic correlations of growth and reproductive traits (ranging from 0.618 to 0.723) indicated the existence of G × E interactions between these two Yorkshire pig populations. For single-trait models, genomic prediction with GBLUP was only 1.1% more accurate on average in the combined population than in single populations, and no significant improvements were obtained by BayesC π for most traits. In addition, single-trait models with either GBLUP or BayesC π produced greater bias for the combined population than for single populations. However, multi-trait models with GBLUP and BayesC π better accommodated G × E interactions, yielding 2.2% – 3.8% and 1.0% – 2.5% higher prediction accuracies for growth and reproductive traits, respectively, compared to those for single-trait models of single populations and the combined population. The multi-trait models also yielded lower bias and larger gains in the case of a small reference population. The smaller improvement in prediction accuracy and larger bias obtained by the single-trait models in the combined population was mainly due to the low consistency of linkage disequilibrium between the two populations, which also caused the BayesC π method to always produce the largest standard error in marker effect estimation for the combined population. (Continued on next page)
* Correspondence: [email protected] 1 National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the sour
Data Loading...