The use of quantitative metallography in determining properties of composites

  • PDF / 449,191 Bytes
  • 3 Pages / 612 x 792 pts (letter) Page_size
  • 22 Downloads / 232 Views

DOWNLOAD

REPORT


hkl

ac (A)

100 001 110 I01 200 111 201 210 300 002 211 102 301 220 112 310 202 221 311 400 212 302 401

5.6863 3.7310 3.2830 3.ii95 2.8432 2.4647 2.2614 2.1492 1.8954 1.8655 1.8623 1.7725 1.6899 1.6415 1.6219 1.5771 1.5597 1.5025 1.4527 1.4216 1.4088 1.3296 1.3284

]c 89 122 105 I6 291 721 1000 333 114 2271 87j 10 2 79 35 214 119 36 331 30 216 92 6~

lo

w m m vvvw vs vvvs vvvs vs m vs vvvw vvvw w vw s m vw vs vvvw s m

Beck for encouragement as well as for making availa b l e f i l m s of e a r l i e r i n v e s t i g a t i o n s . 6 T h a n k s a r e d u e to M r . A. J . K l e i n f o r c o m p e t e n t h e l p i n p r e p a r i n g samples. This work was supported by grants from the Army Research Office, Durham, and the National Science Foundation. I. W. Jeitschko, A. G. Jordan, and Paul A. Beck: Trans. TMS-AIME, 1969, vol. 245, pp. 335-39. 2. B. Deyris, J. Roy-Montreuil,R. Fruchart, and A. Michel:Bull. Soc. Chim. France, 1968,vol. 1968, pp. 1303-04. 3. J. Roy-Montreuil,B. Deyris, R. Fruchart, and A. Michel: Compt. Rend., 1968, vol. C266, pp. 615-17. 4. W. Jeitschko: Acta Cryst., 1970, vol. B26, pp. 815-22. 5. K. Yvon, W. Jeitschko and E. Parth& Report of the Laboratory for Research on the Structure of Matter, Universityof Pennsylvania,Philadelphia,Pa., 1969. 6. D. I. Bardos, R. E. Malik, F. X. Spiegel, and Paul A. Beck: Trans. TMS-AIME, 1966, vol. 236, pp. 40-48.

composites and has been discussed by Crossman, Yue, and Vidoz. 4 In this theory the reinforcing phase (fibers or lamellae) is characterized by a distribution i n s t r e n g t h s . T h e l o a d c a r r i e d by a f a i l e d r e i n f o r c i n g fiber or lamellae is redistributed equally among the r e m a i n i n g f i b e r s o r l a m e l l a e in t h a t p a r t i c u l a r c r o s s section. The fractured reinforcement is not ineffective over its entire length, however. Above and below the fractured surface, shear stresses in the matrix gradually transfer a tensile load to the fiber. At a distance 5/2 above and below the fracture, the rei n f o r c i n g p h a s e a g a i n c a r r i e s t h e f r a c t i o n of l o a d p r e d i c t e d by t h e " r u l e of m i x t u r e s . , ' C o m p o s i t e failure then occurs when-in any given cross section of v e r t i c a l e x t e n t i 6 / 2 - f a i l u r e of o n e a d d i t i o n a l f i b e r o r l a m e l l a e i n c r e a s e s t h e l o a d on t h e r e m a i n i n g to the extent that they all fail. In order to predict composite strengths in this model, the ineffective length, 5, m u s t b e k n o w n a s w e l l a s t h e d i s t r i b u t i o n o f r e inforcing phase strengths, f(a),* for fibers or lamellae ~f(o) do is the fraction of fibers of length 6 that fail between a stress of o and a+do.

of l e n g t h 6. R o s e n a n d F r i e d m a n h a v e s h o w n t h a t if t h e d i s t r i b u t i o n i n s t r e n g t h s , g(5), o f f i b e r s of l e n g t h l i s k n o w n , t h i s c a n b e d i r e c t l y c o n v e r t e d t o f (a) p r o v i d e d 5 i s a l s o k n o w n . T