The Witt Group of Degree k Maps and Asymmetric Inner Product Spaces

  • PDF / 10,598,970 Bytes
  • 276 Pages / 461 x 684 pts Page_size
  • 62 Downloads / 191 Views

DOWNLOAD

REPORT


914 Max L. Warshauer

The Witt Group of Degree k Maps and Asymmetric Inner Product Spaces

Springer-Verlag Berlin Heidelberg New York 1982

Author

Max L.Warshauer Department of Mathematics, Southwest Texas State University San Marcos, TX 78666, USA

AMS Subject Classifications (1980): 10 C 05

ISBN 3-540-11201-4 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-11201-4 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1982 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

TABLE OF CONTENTS

INTRODUCTION .••••••.•....•••.•.•••.•..••..••......••........•

1

CONVENTIONS .•.•.•..•...•......•...•.........••......•..•..•••..

11

Chapter I

THE WITT RING .•.••••......•......•........•.......•

12

l.

Setting and notation ....••.•........•••........•..

12

2.

Inner products •.•.••••..•......•••...........••...

14

3.

Constructing new inner products out of old ....•...

23

4.

The symmetry operator .....••.........•..............

26

5.

The Witt equivalence relation ....•.•.•.•..•....••..

33

6.

Anisotropic representatives .••....•.••.••..•...•..

41

Chapter II

WITT INVARIANTS ..........•..•..•..•.•...•......

47

1.

Prime i d e a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

2.

Hilbert symbols •....•.......•..•..•................

51

3.

Rank. . . • . . . . . . . . • . • • . • . . . • . . • . . • . . . . . . . • . • . . . . . • . .

54

4.

Diagonalization and the discriminant .•........•..•

55

5.

Signatures.........................................

66

Chapter III Chapter IV

POLYNOMIALS........................ • . . . .. . . • . .

70

WITT GROUP OF A FIELD ...•.......•.••..•.••.....

79

l.

Decomposition by characteristic polynomial

79

2.

The trace lemma .•..........•••.............•....•.

90

3.

Computing Witt groups ......•.....•...............•. 100

4.

Torsion in

Chapter V

W(-k,Fl

.......•..•..•............•.....• 105

THE SQUARING MJ..P ..•..•..•..•.....•.......•...•..... 108

l.

Scharlau's transfer .•......•.••.....•..............•... III

2.

The exact octagon over a field . . . . . . . . . . . . . • . . . . . . 123

IV

Chapter VI

THE BOUNDARy •... , ...•.••.............•........•..... 133

1.

The boundary homomorphism

133

2.

Reducing to the maximal order

142

3.

Computing the local boundary

a(D,p)

for the

maximal order 4.

152

Computing the cokernel of

Chapter VII

a (D)

• . . . . . . . • . . . . . . . . . 167 184

NON MAXIMAL ORDERS

1.

Traces and canonical localizers .......•..•...•... 184

2.

Normal extensions

3.