The Witt Group of Degree k Maps and Asymmetric Inner Product Spaces
- PDF / 10,598,970 Bytes
- 276 Pages / 461 x 684 pts Page_size
- 62 Downloads / 238 Views
		    914 Max L. Warshauer
 
 The Witt Group of Degree k Maps and Asymmetric Inner Product Spaces
 
 Springer-Verlag Berlin Heidelberg New York 1982
 
 Author
 
 Max L.Warshauer Department of Mathematics, Southwest Texas State University San Marcos, TX 78666, USA
 
 AMS Subject Classifications (1980): 10 C 05
 
 ISBN 3-540-11201-4 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-11201-4 Springer-Verlag New York Heidelberg Berlin
 
 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © by Springer-Verlag Berlin Heidelberg 1982 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
 
 TABLE OF CONTENTS
 
 INTRODUCTION .••••••.•....•••.•.•••.•..••..••......••........•
 
 1
 
 CONVENTIONS .•.•.•..•...•......•...•.........••......•..•..•••..
 
 11
 
 Chapter I
 
 THE WITT RING .•.••••......•......•........•.......•
 
 12
 
 l.
 
 Setting and notation ....••.•........•••........•..
 
 12
 
 2.
 
 Inner products •.•.••••..•......•••...........••...
 
 14
 
 3.
 
 Constructing new inner products out of old ....•...
 
 23
 
 4.
 
 The symmetry operator .....••.........•..............
 
 26
 
 5.
 
 The Witt equivalence relation ....•.•.•.•..•....••..
 
 33
 
 6.
 
 Anisotropic representatives .••....•.••.••..•...•..
 
 41
 
 Chapter II
 
 WITT INVARIANTS ..........•..•..•..•.•...•......
 
 47
 
 1.
 
 Prime i d e a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 48
 
 2.
 
 Hilbert symbols •....•.......•..•..•................
 
 51
 
 3.
 
 Rank. . . • . . . . . . . . • . • • . • . . . • . . • . . • . . . . . . . • . • . . . . . • . .
 
 54
 
 4.
 
 Diagonalization and the discriminant .•........•..•
 
 55
 
 5.
 
 Signatures.........................................
 
 66
 
 Chapter III Chapter IV
 
 POLYNOMIALS........................ • . . . .. . . • . .
 
 70
 
 WITT GROUP OF A FIELD ...•.......•.••..•.••.....
 
 79
 
 l.
 
 Decomposition by characteristic polynomial
 
 79
 
 2.
 
 The trace lemma .•..........•••.............•....•.
 
 90
 
 3.
 
 Computing Witt groups ......•.....•...............•. 100
 
 4.
 
 Torsion in
 
 Chapter V
 
 W(-k,Fl
 
 .......•..•..•............•.....• 105
 
 THE SQUARING MJ..P ..•..•..•..•.....•.......•...•..... 108
 
 l.
 
 Scharlau's transfer .•......•.••.....•..............•... III
 
 2.
 
 The exact octagon over a field . . . . . . . . . . . . . • . . . . . . 123
 
 IV
 
 Chapter VI
 
 THE BOUNDARy •... , ...•.••.............•........•..... 133
 
 1.
 
 The boundary homomorphism
 
 133
 
 2.
 
 Reducing to the maximal order
 
 142
 
 3.
 
 Computing the local boundary
 
 a(D,p)
 
 for the
 
 maximal order 4.
 
 152
 
 Computing the cokernel of
 
 Chapter VII
 
 a (D)
 
 • . . . . . . . • . . . . . . . . . 167 184
 
 NON MAXIMAL ORDERS
 
 1.
 
 Traces and canonical localizers .......•..•...•... 184
 
 2.
 
 Normal extensions
 
 3.		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	