Theory of Sobolev Multipliers With Applications to Differential and

The purpose of this book is to give a comprehensive exposition of the theory of pointwise multipliers acting in pairs of spaces of differentiable functions. The theory was essentially developed by the authors during the last thirty years and the present v

  • PDF / 6,996,876 Bytes
  • 615 Pages / 473.912 x 669.274 pts Page_size
  • 86 Downloads / 199 Views

DOWNLOAD

REPORT


maz’ya

1

vladimir g. maz’ya tatyana o. shaposhnikova

Volume 337 Grundlehren der mathematischen Wissenschaften

theory of

A Series of Comprehensive Studies in Mathematics

theory of sobolev multipliers with applications to differential and integral operators

1 23

Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics

Series editors M. Berger B. Eckmann P. de la Harpe F. Hirzebruch N. Hitchin L. Hörmander A. Kupiainen G. Lebeau M. Ratner D. Serre Ya. G. Sinai N.J.A. Sloane A. Vershik M. Waldschmidt Editor-in-Chief A. Chenciner J. Coates

S.R.S. Varadhan

337

, Vladimir G. Maz ya Tatyana O. Shaposhnikova

Theory of Sobolev Multipliers With Applications to Differential and Integral Operators

ABC

, Vladimir Maz ya

Tatyana Shaposhnikova

Department of Mathematical Sciences M&O Building University of Liverpool Liverpool L69 3BX UK

Department of Mathematics Linkö ping University SE-581 83 Linkö ping Sweden [email protected]

and

Department of Mathematics Linkö ping University SE-581 83 Linkö ping Sweden [email protected]

ISBN: 978-3-540-69490-8

e-ISBN: 978-3-540-69492-2

Library of Congress Control Number: 2008 932182 Mathematics Subject Classification Numbers (2000): 26D10, 46E25, 42B25 c 2009 Springer-Verlag Berlin Heidelberg  This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMX Design GmbH, Heidelberg Printed on acid-free paper springer.com

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Part I Description and Properties of Multipliers 1

2

Trace Inequalities for Functions in Sobolev Spaces . . . . . . . . . 1.1 Trace Inequalities for Functions in w1m and W1m . . . . . . . . . . . . . 1.1.1 The Case m = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 The Case m ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Trace Inequalities for Functions in wpm and Wpm , p > 1 . . . . . . . 1.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 The (p, m)-Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Estimate for the Integral of Capacity of a Set Bounded by a L