Thermo- and Electromechanics of Thin-Film Microstructures

Applications using thin-film micromechanical structures for actuation and sensing require the coupling of energy between various physical domains. This chapter focuses on two important couplings: thermomechanics and electromechanics. Thermomechanical phen

  • PDF / 1,405,026 Bytes
  • 43 Pages / 547.146 x 686 pts Page_size
  • 41 Downloads / 170 Views

DOWNLOAD

REPORT


Thermo- and 35.1 Thermomechanics of Multilayer Thin-Film Microstructures .. 1041 35.1.1 Basic Phenomena....................... 1041 35.1.2 A General Framework for the Thermomechanics of Multilayer Films ..................... 1046 35.1.3 Nonlinear Geometry ................... 1054 35.1.4 Nonlinear Material Behavior ........ 1058 35.1.5 Other Issues............................... 1061 35.2 Electromechanics of Thin-Film Microstructures ................. 1061 35.2.1 Applications of Electromechanics . 1061 35.2.2 Electromechanics Analysis ........... 1063 35.2.3 Electromechanics – Parallel-Plate Capacitor .............. 1064 35.2.4 Electromechanics of Beams and Plates ................... 1066 35.2.5 Electromechanics of Torsional Plates ...................... 1068 35.2.6 Leveraged Bending..................... 1069 35.2.7 Electromechanics of Zipper Actuators ..................... 1070 35.2.8 Electromechanics for Test Structures.................................. 1072 35.2.9 Electromechanical Dynamics: Switching Time .......................... 1073 35.2.10 Electromechanics Issues: Dielectric Charging ..................... 1074 35.2.11 Electromechanics Issues: Gas Discharge ............................ 1075 35.3 Summary and Mention of Topics not Covered ............................ 1078 References .................................................. 1078

small gaps. We address these phenomena for a wide range of micro mechanical structures including cantilevered beams and plates, torsion ally suspended plates, and zipper actuators with curved electrodes.

Part E 35

Applications using thin-film micromechanical structures for actuation and sensing require the coupling of energy between various physical domains. This chapter focuses on two important couplings: thermomechanics and electromechanics. Thermomechanical phenomena is considered in Sect. 35.1 where we describe broad aspects of the deformation characteristics and stress states that arise when dealing with a large class of thin-film microstructures. These include the origin of stresses in multiplayer films and their qualitative evolution through processing and release from the substrate. A basic framework is described for the analysis of the thermo mechanics of multiplayer films, emphasizing linear response. Issues of geometric and material no linearity are then taken up, and equal emphasis is put on the generality of the analysis approach and specific applications. As much as possible, we show comparisons between theoretical predictions and companion experimental results. A common use of electro mechanics in microsystems involves the application of an electric potential between two electrodes where one is fixed and the other is connected to a deformable elastic structure. The electric potential produces an electric field and an associated electrostatic force that deforms the structure, and in turn alters the electrostatic force, resulting in fully-coupled nonlinear behavior. At some point an instability can occur where the deformable structure snaps into contact with th