To recycle, or not to recycle, that is the question: Insights from life-cycle analysis

  • PDF / 514,414 Bytes
  • 6 Pages / 585 x 783 pts Page_size
  • 48 Downloads / 182 Views

DOWNLOAD

REPORT


To recycle, or not to recycle, that is the question: Insights from life-cycle analysis Linda Gaines Everyone has heard the slogan “Reduce, Reuse, Recycle”—but does observing this hierarchy really minimize negative impacts? With respect to reduction, it seems clear that using less of something decreases the impact. Similarly, reuse of a material or product should decrease the impact of each use, as long as the resources needed to restore the item to usable condition each time are not too large. For recycling, the picture varies by material and often involves tradeoffs among impacts. Life-cycle analysis aims to comprehensively compare all of the impacts of various disposition options. This article summarizes the pros and cons of recycling materials used in paper, drink containers, and the complex batteries for electric vehicles from the perspective of life-cycle analysis.

Why recycle? The most commonly stated reason for recycling is to reduce burdens associated with the disposal of our never-ending stream of wastes. Waste disposal potentially causes air and water pollution and is costly; moreover, landfills compete with other land uses. In addition, recycling can extend our supply of materials to alleviate scarcity and to moderate rising prices of raw materials. Furthermore, recycling is often more environmentally benign than using virgin raw materials and can reduce energy use and emissions of greenhouse gases and other pollutants.

Life-cycle analysis Despite these positive attributes, not all recycling processes are created equal. For example, Figure 1 shows various alternative paths that might be used to recycle car batteries. As is evident from this figure (and from the definitions in the sidebar), recycling can re-introduce materials at different stages of a production process, thereby displacing parts of the virgin-material process. Each recycling option will create its own impacts, often but not always lower, which must be taken into account as well. How does one identify the best options? A useful technique for comparing alternative technological options is life-cycle analysis (LCA) . LCA takes a system-wide perspective, considering all stages of the life cycle of a product or service,

including material production, system manufacture and assembly, service provision, maintenance and repair, and end-of-life processes. In the next section, we show how LCA compares disposition alternatives for discarded materials. The results are not always obvious, as they depend on many factors and can lead to tradeoffs among impacts. Other criteria, such as financial, institutional, or regulatory concerns, enter the picture as well.

Examples This section provides three examples in which LCA is useful in comparing options for items that would otherwise be thrown away. The first two examples are short-lived consumer products—paper products and beverage containers—whereas the last is a complex, durable item—the battery for an electricdrive vehicle—that is expected to have a service life of about 10 years. Although this article is w