Turning up the heat: warming influences plankton biomass and spring phenology in subtropical waters characterized by ext
- PDF / 2,587,441 Bytes
- 15 Pages / 595.276 x 790.866 pts Page_size
- 65 Downloads / 166 Views
GLOBAL CHANGE ECOLOGY – ORIGINAL RESEARCH
Turning up the heat: warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory Hu He1 · Qisheng Li1 · Jing Li2 · Yanqing Han1 · Yu Cao3 · Wei Liu4 · Jinlei Yu1 · Kuanyi Li1,5 · Zhengwen Liu1,5,6 · Erik Jeppesen4,5,7 Received: 4 December 2019 / Accepted: 14 September 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020
Abstract Understanding how biological communities respond to climate change is a major challenge in ecology. The response of ectotherms to changes in temperature depends not only on their species-specific thermal tolerances but also on temperaturemediated interactions across different trophic levels. Warming is predicted to reinforce trophic cascades in linear aquatic food chains, but little is known about how warming might affect the lower trophic levels of food webs involving extensive fish omnivory, a common scenario in subtropical and tropical waterbodies. In this study, a mesocosm warming experiment was conducted involving a pelagic food chain (fish–zooplankton–phytoplankton) topped by the omnivorous bighead carp [Aristichthys nobilis (Richardson)]. We found that temperature elevation significantly enhanced the growth of fish and suppressed zooplankton, including both metazooplankton and ciliates, while abundances of phytoplankton, despite disruption of temporal dynamics, did not increase correspondingly—likely due to fish predation. Our results suggest that trophic cascades are less unlikely to be reinforced by warming in food chains involving significant omnivory. Moreover, we found that warming advanced the spring abundance peak of phytoplankton abundance and that of the parthenogenetic rotifer Brachionus quadridentatus; whereas, it had no effect on the only sexually reproducing copepod, Mesocyclops leuckarti, presumably due to its prolonged life history. Our study also confirmed that warming may lead to a phenological mismatch between some predators and their prey because of the distinct life histories among taxa, with potentially severe consequences for resource flow in the food chain, at least in the short term. Keywords Warming · Plankton · Omnivory · Food chain · Phenology · Mismatch
Communicated by Ulrich Sommer. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00442-020-04758-x) contains supplementary material, which is available to authorized users. * Hu He [email protected] 1
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
2
Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
3
Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
4
Department of Bioscience, Aarhus University, Silkeborg, Denmark
5
Sino-Da
Data Loading...