US Department of Energy launches grant program in quantum materials

  • PDF / 411,593 Bytes
  • 2 Pages / 585 x 783 pts Page_size
  • 21 Downloads / 188 Views

DOWNLOAD

REPORT


US Department of Energy launches grant program in quantum materials

A

fter years of lobbying and the eventual passage of a comprehensive funding bill, the first monies for a widespread federal effort to promote quantum information science (QIS) are now available to researchers. On January 10, the US Department of Energy (DOE) issued a request for funding applications totaling up to USD$625 million over the next five years. This will go toward developing the National Quantum Initiative Program (NQIP). Final applications closed on April 10. The NQIP was established by a bill signed into law on December 21, 2018, to “provide for a coordinated Federal program to accelerate quantum research and development for the economic and national security of the United States.” Until recently, support for QIS on the national level has been relegated to

individual federal agencies at much smaller funding levels, according to Damon Dozier, Director of Government Affairs at the Materials Research Society (MRS), and Jeanie Lau, professor of physics at The Ohio State University. “Federal agencies identify research priorities annually and QIS has been one of those targeted priorities,” Dozier says. “The agencies, for the most part, do a good job of listening to the community and trying to get a sense of what emerging topics are out there.” For example, the National Science Foundation’s (NSF) Enabling Quantum Leap has funded smaller teams, including a quantum materials foundry at the University of California, Santa Barbara. This has been a long time coming. The government has invested in QIS since at least 1994, when Massachusetts Institute

Diamond anvil cells compress and alter the properties of hydrogen-rich materials in Ranga Dias’s laboratory of quantum phenomena at extreme conditions. Photo credit: J. Adam Fenster, University of Rochester.

of Technology professor of computer science Peter Shor devised a quantum algorithm to factor large numbers into primes while at Bell Laboratories, according to Jeremy Levy, professor of physics at the University of Pittsburgh and director of the Pittsburgh Quantum Institute. This was a key step in quantum cryptography; the first was the quantum key distribution protocol (cryptography) called BB84 created by Charles Bennett and Gilles Brassard in 1984. Levy himself was personally involved with the Defense Advanced Research Projects Agency’s Quantum Information Science and Technology Program in 2000. But a coordinated, long-term, plan had been lacking, Dozier says. “Getting that recognition from Congress and the White House is important.” Making QIS a national priority is largely due to the lobbying efforts of scientists and science advocacy organizations, according to Dozier. Levy says, “The second quantum revolution has been coming for a long time, but it’s started to heat up right now.” QIS promises to help answer questions that cannot be solved by conventional means. While standard computers rely on information coded as binary values (ones and zeroes), or bits, quantum computers store infor