Variation of diffuse attenuation coefficient of downwelling irradiance in the Arctic Ocean
- PDF / 2,790,927 Bytes
- 10 Pages / 595.276 x 841.89 pts (A4) Page_size
- 0 Downloads / 152 Views
Variation of diffuse attenuation coefficient of downwelling irradiance in the Arctic Ocean WANG Weibo1*, ZHAO Jinping1 1
Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China
Received 10 November 2013; accepted 8 April 2014 ©The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014
Abstract The diffuse attenuation coefficient (Kd) for downwelling irradiance is calculated from solar irradiance data measured in the Arctic Ocean during 3rd and 4th Chinese National Arctic Research Expedition (CHINARE), including 18 stations and nine stations selected for irradiance profiles in sea water respectively. In this study, the variation of attenuation coefficient in the Arctic Ocean was studied, and the following results were obtained. First, the relationship between attenuation coefficient and chlorophyll concentration in the Arctic Ocean has the form of a power function. The best fit is at 443 nm, and its determination coefficient is more than 0.7. With increasing wavelength, the determination coefficient decreases abruptly. At 550 nm, it even reaches a value lower than 0.2. However, the exponent fitted is only half of that adapted in low-latitude ocean because of the lower chlorophyll-specific absorption in the Arctic Ocean. The upshot was that, in the case of the same chlorophyll concentration, the attenuation caused by phytoplankton chlorophyll in the Arctic Ocean is lower than in low-latitude ocean. Second, the spectral model, which exhibits the relationship of attenuation coefficients between 490 nm and other wavelength, was built and provided a new method to estimate the attenuation coefficient at other wavelength, if the attenuation coefficient at 490 nm was known. Third, the impact factors on attenuation coefficient, including sea ice and sea water mass, were discussed. The influence of sea ice on attenuation coefficient is indirect and is determined through the control of entering solar radiation. The linear relationship between averaging sea ice concentration (ASIC, from 158 Julian day to observation day) and the depth of maximum chlorophyll is fitted by a simple linear equation. In addition, the sea water mass, such as the ACW (Alaskan Coastal Water), directly affects the amount of chlorophyll through taking more nutrient, and results in the higher attenuation coefficient in the layer of 30–60 m. Consequently, the spectral model of diffuse attenuation coefficient, the relationship between attenuation coefficient and chlorophyll and the linear relationship between the ASIC and the depth of maximum chlorophyll, together provide probability for simulating the process of diffuse attenuation coefficient during summer in the Arctic Ocean. Key words: diffuse attenuation coefficient, Arctic Ocean, average sea ice concentration, Alaskan Coastal Water Citation: Wang Weibo, Zhao Jinping. 2014. Variation of diffuse attenuation coefficient of downwelling irradiance in the Arctic Ocean. Acta Oceanologica Sinica, 33(6): 53–62, doi: 10.1007/s13131-01
Data Loading...