Visual Prosthetics Physiology, Bioengineering, Rehabilitation

Visual Prosthetics provides an in-depth analysis of the principles of operation, current state, anticipated developments, and functional aspects of visual prosthetics restoring sight to visually impaired individuals. This volume uniquely describes the hum

  • PDF / 12,136,495 Bytes
  • 456 Pages / 439.37 x 666.142 pts Page_size
  • 90 Downloads / 209 Views

DOWNLOAD

REPORT


wwwwwwwwwwwww

Gislin Dagnelie Editor

Visual Prosthetics Physiology, Bioengineering, Rehabilitation

Editor Gislin Dagnelie Lions Vision Research & Rehabilitation Center Johns Hopkins University School of Medicine 550 N. Broadway, 6th floor Baltimore, MD 21205-2020 USA [email protected]

ISBN 978-1-4419-0753-0 e-ISBN 978-1-4419-0754-7 DOI 10.1007/978-1-4419-0754-7 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011921400 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Visual Prosthetics as a Multidisciplinary Challenge This is a book about the quest to realize a dream: the dream of restoring sight to the blind. A dream that may have been with humanity much longer than the idea that disabilities can be treated through technology – which itself is probably a very old idea. Long ago, when blindness was still considered a curse from the gods, someone must have had the inspiration of building a wooden leg to replace one that had been crushed in a natural calamity or in battle. Many centuries lie between the concept of creating such a crude prosthesis to treat disability and today’s endeavors to replace increasingly complex bodily functions, but the wish to restore useful function and the researchers’ creative spirit remain the same. Around 1980, the developers of the cochlear implant were performing the first modest clinical trials of a technology to make the deaf hear again, or even hear for the first time. From those humble first attempts sprang a field that has become a model for modern neuroprosthetics, with tens of thousands of cochlear implants used successfully around the world. The development of the cochlear prosthesis illustrates the importance of bringing together professionals from a wide range of disciplines, from basic biology and engineering to rehabilitation, to create a functional substitute for a human sensory organ. In 1995, the editor of IEEE Spectrum magazine determined that artificial vision might be the next technological frontier, and that it should be the topic of a special issue. He invited a half dozen vision researchers to contribute articles about their expectations in two areas, visual prosthetics and machine vision, combined under t