309 MR assessment of myocardial perfusion, viability and function after intramyocardial transfer of plasmid expressing t

  • PDF / 670,425 Bytes
  • 2 Pages / 610 x 792 pts Page_size
  • 40 Downloads / 168 Views

DOWNLOAD

REPORT


BioMed Central

Open Access

Meeting abstract

309 MR assessment of myocardial perfusion, viability and function after intramyocardial transfer of plasmid expressing two isoforms of hepatocyte growth factor in swine model Maythem Saeed*, Alastair Martin, Loi Do, Matthew Bucknor, David Saloner and Charles Higgins Address: Univerisity of California San Francisco, San Francisco, CA, USA * Corresponding author

from 11th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 1–3 February 2008 Published: 22 October 2008 Journal of Cardiovascular Magnetic Resonance 2008, 10(Suppl 1):A112

doi:10.1186/1532-429X-10-S1-A112

Abstracts of the 11th Annual SCMR Scientific Sessions - 2008

Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1532-429X-10-S1-info.pdf

This abstract is available from: http://jcmr-online.com/content/10/S1/A112 © 2008 Saeed et al; licensee BioMed Central Ltd.

Introduction

Results

Coronary angioplasty or bypass surgery is routinely applied to restore flow to ischemic myocardium. Nevertheless, many patients with end stage coronary artery disease continue to suffer from disabling angina. This problem has increased interest in alternative revascularization strategies (angiogenic growth factors, genes or stem cells).

The peak signal intensity (SI), extents of hypoenhanced ischemic myocardium and max upslope data in the two groups were not significantly different at 3 days. At 7–8 weeks peak signal intensity was higher and maximum upslope data was steeper in treated animals compared to controls. The extent of hyperenhanced scar was significantly larger in control (13.2 ± 1.6% LV) compared with HGF treated (7.0 ± 0.5% LV) animals. TTC analysis also showed that the extent of scar tissue was significantly larger in control (12.0 ± 1.7%) compared with treated (6.6 ± 0.7% LV, P = 0.04) animals. There was no significant difference between the extent of hyperenhanced scar on MRI and TTC (P = 0.32). The infarction tended to be non-transmural with a residual thicker wall in treated compared with control animals both on MR images and TTC. Control animals showed evidence of LV remodeling, which was reflected by increased end systolic volumes and decline in ejection fraction. Treated animals showed a decrease from in end diastolic (2.15 ± 0.12 to 1.82 ± 0.12, P = 0.008) and end systolic (1.33 ± 0.07 to 1.00 ± 0.08, P = 0.001) volumes. They also showed increased ejection fraction (40.3 ± 1.3 to 45.7 ± 1.8, P = 0.001).

Purpose To determine the effects of intramyocardial transfer of plasmid DNA gene (HGF gene) expressing two isoforms of human hepatocyte growth factor (HGF) on perfusion, viability and LV function using MR imaging.

Methods In this study the HGF gene was injected intramyocardially in reperfused infarction (2 hr occlusion), for the purpose of evaluating this strategy as a therapeutic approach for protection from LV remodeling. MR imaging was performed at 3 days and 7–8 weeks on a 1.5-T MR clinical scanner (Phil