A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological
- PDF / 785,713 Bytes
- 9 Pages / 595.276 x 790.866 pts Page_size
- 9 Downloads / 192 Views
RESEARCH PAPER
A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological conditions Joanna Kruszewska 1 & Jacek Sikorski 1 & Jan Samsonowicz-Górski 1 & Magdalena Matczuk 1 Received: 15 May 2020 / Revised: 2 September 2020 / Accepted: 9 September 2020 # The Author(s) 2020
Abstract Over the past few years, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted much attention due to their medicinally attractive properties and their possible application in cancer diagnosis and therapy. However, there is still a lack of appropriate methods to enable quantitative monitoring of the particle changes in a physiological environment, which could be beneficial for evaluating their in vitro and in vivo behavior. For this reason, the main goal of this study was the development of a novel capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS/MS) method for the determination of SPIONs suitable for the future examination of their changes upon incubation with proteins under simulated physiological conditions. The type and flow rate of the collision/reaction gas were chosen with the aim of simultaneous monitoring of Fe and S. The type and concentration of the background electrolyte, applied voltage, and sample loading were optimized to obtain SPION signals of the highest intensity and minimum half-width of the peak. Analytical parameters were at a satisfactory level: reproducibility (intra- and inter-day) of migration times and peak areas (presented as RSD) in the range of 0.23–4.98%, recovery: 96.7% and 93.3%, the limit of detection (for monitoring 56Fe16O+ by mass-shift approach) 54 ng mL−1 Fe (0.97 μM) and 101 ng mL−1 Fe (1.82 μM) for SPIONs with carboxyl and amino terminal groups, respectively. To the best of our knowledge, this is the first reported use of CE-ICP-MS/MS for the quantification of SPIONs and monitoring of interactions with proteins. Keywords Capillary electrophoresis . Superparamagnetic iron oxide nanoparticles . Inductively coupled plasma tandem mass spectrometry . Human serum albumin
Introduction Superparamagnetic iron oxide nanoparticles (SPIONs) are the group of nanomaterials composed of ferromagnetic compounds, such as magnetite (Fe3O4), which at a size smaller than ca. 30 nm exhibits a unique form of magnetism, i.e., superparamagnetism [1, 2]. The range of possible biomedical applications of SPIONs is wide, including magnetic resonance imaging, drug and gene delivery, magnetic hyperthermia Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00216-020-02948-3) contains supplementary material, which is available to authorized users. * Magdalena Matczuk [email protected] 1
Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
therapy, photodynamic therapy, phototherapy, and chemotherapy [3, 4]. They can be applied as theranostic nanoprobes, having both therapeutic and diagnostic propertie
Data Loading...