A Routing Protocol for Balancing Energy Consumption in Heterogeneous Wireless Sensor Networks

To balance energy consumption for nodes is an important factor considered in wireless sensor networks (WSN). In the paper, we research a heterogeneous wireless sensor networks with two different type sensors which have different initial energy as well as

  • PDF / 209,334 Bytes
  • 10 Pages / 430 x 660 pts Page_size
  • 25 Downloads / 252 Views

DOWNLOAD

REPORT




South China University of Technology Guangzhou, 510640, China [email protected] Abstract. To balance energy consumption for nodes is an important factor considered in wireless sensor networks (WSN). In the paper, we research a heterogeneous wireless sensor networks with two different type sensors which have different initial energy as well as have different length data message to transmit. Each sensor node in such a network is systematically gathering and transmission sensed data to a base station for further processing. We develop and analyze the protocol based on residual energy and energy consumption rate (REECR), which is an energy efficient routing protocol we proposed previously for heterogeneous wireless sensor networks. Although REECR protocol is more energy efficient than Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, it is not very ideal to balance the energy consumption of nodes, namely, from the first node dies to the last node dies, the time span is long. This paper proposed a zone-based REECR (ZREECR) routing protocol to balance the energy consumption of nodes in the networks, simulation results show that all nodes die from start to end become shorter, the balance of energy consumption between nodes is improved. Keywords: Wireless sensor networks, balance energy consumption, routing protocol.

1 Introduction Wireless sensor networks consist of battery-operated sensor devices with computing, data processing, and communicating components. Nodes in the networks sense certain phenomena in the area of interest, and report their observations to a central base station for further analysis. Wireless sensor networks have recently come into prominence because they hold the potential to revolutionize many segments of our economy and life. Wireless sensor networks are suitable for various tasks, including surveillance, widespread environmental monitoring, manufacturing and business asset management, automation in the transportation, security, and health-care industries. Compared to existing infrastructure-based networks, wireless sensor networks can be used in virtually any environment, especially those where wired connections are not possible or the terrain is inhospitable [1, 2]. ∗

This work is supported in part by Nation Science Foundation of Guangdong under grant NO. 06300232.

H. Zhang et al. (Eds.): MSN 2007, LNCS 4864, pp. 79–88, 2007. © Springer-Verlag Berlin Heidelberg 2007

80

X. Li, D. Huang, and Z. Sun

At present, research on wireless sensor networks has generally assumed that nodes are homogeneous. In reality, homogeneous sensor networks hardly exist, even homogeneous sensors also have different capabilities like different levels of initial energy, depletion rate, etc. This leads to the research on heterogeneous networks where at two or more types of nodes are considered. However, most researchers prevalently assume that nodes are divided into two types with different functionalities, powerful nodes and normal nodes. The powerful nodes have more initial energy and fewer amounts th