Analysis 1 + 2 Ein Wegweiser zum Studienbeginn

Dieses Buch ist entstanden aus Vorlesungen an der Technischen Universität München und behandelt im Wesentlichen die Themen, die üblicherweise Gegenstand der Vorlesungen "Analysis" der ersten beiden Semester im Bachelor-Studium der Mathematik und Physik si

  • PDF / 3,747,568 Bytes
  • 254 Pages / 439.37 x 666.142 pts Page_size
  • 83 Downloads / 229 Views

DOWNLOAD

REPORT


Rupert Lasser  Frank Hofmaier

Analysis 1 C 2 Ein Wegweiser zum Studienbeginn

Rupert Lasser Technische Universität München, Deutschland

Frank Hofmaier Technische Universität München, Deutschland

ISBN 978-3-642-28643-8 DOI 10.1007/978-3-642-28644-5

ISBN 978-3-642-28644-5 (eBook)

Mathematics Subject Classification (2010): 97I10, 97I30, 97I40 Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Springer Spektrum © Springer-Verlag Berlin Heidelberg 2012 Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier Springer Spektrum ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media www.springer-spektrum.de

Vorwort

Das vorliegende Buch beruht auf den Vorlesungen Analysis 1 und Analysis 2 im Bachelor-Studium der Mathematik an der Technischen Universit¨at M¨unchen. Die Analysis ist sicherlich eine der a¨ ltesten und anwendungsreichsten Theorien und somit ein klassisches Fach der Mathematik. Insofern kann dieses Buch nur Ergebnisse enthalten, die wohlbekannt und auch in zahlreichen weiteren B¨uchern zur Analysis zu finden sind. Unsere Referenzliste enth¨alt nur einen kleinen Teil der Gesamtheit von Lehrb¨uchern zu diesem Thema. ¨ Uber das gesamte Lehrbuch hinweg legen wir Wert auf die mathematische Pr¨azision. Durch zahlreiche motivierende Beispiele werden die mathematischen Sachverhalte beleuchtet, der Idee folgend Abstraktes mit Konkretem zu verkn¨upfen. Das Buch ist in 16 Kapitel unterteilt. Die ersten beiden Abschnitte geben die notwendigen Grundlagen zu reellen und komplexen Zahlen. Der zentrale Begriff der Konvergenz steht im Mittelpunkt der drei folgenden Kapitel. Konvergenz wird nicht nur im Bereich der reellen oder komplexen Zahlen sondern allgemein in metrischen R¨aumen studiert. Es folgen Abschnitte u¨ ber Stetigkeit, Differentiation und Integration. Die Kapitel 9 bis 11 befassen sich mit Konvergenz von Funktionsfolgen, insbesondere Taylorreihen und Fourierreihen. Die wichtige Eigenschaft der Kompaktheit bildet den Inhalt von Kapitel 12. Als vorbereitender Teil werden dann Grundlagen zu normierten Vektorr¨aumen pr¨asentiert. Differenzierbarkeit im Mehrdimensionalen, Umkehrsatz und implizite Funktionen bilden die Basis der mehrdimensionalen Analysis und sind Inh