Anatomy of the ventricular septal defect in congenital heart defects: a random association?

  • PDF / 736,806 Bytes
  • 8 Pages / 595.276 x 790.866 pts Page_size
  • 71 Downloads / 158 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Anatomy of the ventricular septal defect in congenital heart defects: a random association? Meriem Mostefa-Kara1,2*, Lucile Houyel3 and Damien Bonnet1,2

Abstract Background: A ventricular septal defect (VSD) is an integral part of most congenital heart defects (CHD). To determine the prevalence of VSD in various types of CHD and the distribution of their anatomic types. Methods: We reviewed 1178 heart specimens with CHD from the anatomic collection of the French Reference Centre for Complex Congenital Heart Defects. During the morphologic study a special attention was paid to the localisation of the VSD viewed from the right ventricular side. The VSDs were classified as muscular, central perimembranous, outlet located between the two limbs of the septal band, and inlet. The specimens were classified according to the 9 categories and 23 subcategories of the anatomic and clinical classification of CHD1 (ACC-CHD). Results: Ventricular septum was almost always intact in anomalies of pulmonary veins (4/73, 5%), Ebstein anomaly (3/21, 14%), and double-inlet right ventricle (DIRV, 1/10, 10%). There was always a VSD in tetralogy of Fallot and variants (TOF, 123 cases) and common arterial trunk (CAT, 55 cases), always of the outlet type. There was almost always a VSD in double inlet left ventricle (33/34, 97%, always muscular), congenitally corrected transposition of great arteries (ccTGA, 23/24, 96%), interrupted aortic arch (IAA, 25/27, 93%), and double outlet right ventricle (DORV, 92/106, 87%). A VSD was found in 68% of aortic coarctation (CoA, 43/63), 62% of heterotaxy syndromes (21/34), 54% of transposition of the great arteries (TGA, 104/194). The VSD was located between the two limbs of the septal band in 100% of TOF and CAT, 80% of IAA, 77% of DORV, 82% of DD. The VSD was of the inlet type in 17% of cc TGA and in 71% of heterotaxy syndromes. In TGA, the VSD was outlet in 40%, central perimembranous in 25%, muscular in 25%, inlet in 10%. In CoA, the VSD was outlet in 44%, central perimembranous in 35%, muscular in 21%. In the 10% hearts with isolated VSD, the distribution was outlet in 44%, central perimembranous in 36%, muscular in 18%, and inlet in 2%. Conclusion: The anatomic distribution of VSD is similar in isolated VSD, CoA and TGA, while the VSD is predominantly outlet in outflow tract defects except TGA. This reinforces the allegedly different mechanisms in TGA and cardiac neural crest defects. This anatomic approach could provide new insights in the grouping and aetiology of CHD. Keywords: Ventricular septal defect, Congenital heart defect

Background Separation of the left and right ventricles in the human heart is dependent on a single structure, the interventricular septum. This structure is complex from an anatomic standpoint and has multiple embryologic origins. * Correspondence: [email protected] 1 Université Paris Descartes, Sorbonne Paris Cité, 149 rue de Sevres, 75004 Paris, France 2 Congenital and Paediatric Cardiology, Centre de Référence Malformations Cardiaques Congé