Arrestin-Mediated Activation of p38 MAPK: Molecular Mechanisms and Behavioral Consequences
Studies of kappa opioid receptor signaling mechanisms during the last decade have demonstrated that agonist activation of the receptor results in Gβγ-dependent signaling and distinct arrestin-dependent signaling events. Gβγ-dependent signaling results in
- PDF / 179,437 Bytes
- 12 Pages / 439.37 x 666.142 pts Page_size
- 74 Downloads / 254 Views
Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Kappa Opioid Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Stress-Induced Release of Dynorphin Increases Phospho-p38 MAPK in a GRK3and Arrestin-3-Dependent Manner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Astrocyte Activation by Dynorphin Occurs Through an Arrestin/p38 MAPK Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Kappa Receptor Activation of Arrestin/p38 MAPK Regulates the Potassium Channel Kir3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Kappa Receptor Activation of Arrestin/p38 MAPK Activates the Serotonin Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
282 284 286 287 287 288 289 290
Abstract Studies of kappa opioid receptor signaling mechanisms during the last decade have demonstrated that agonist activation of the receptor results in Gβγ-dependent signaling and distinct arrestin-dependent signaling events. Gβγ-dependent signaling results in ion channel regulation causing neuronal inhibition, inhibition of transmitter release, and subsequent analgesic responses. In contrast, arrestin-dependent signaling events result in p38 MAPK activation and subsequent dysphoric and proaddictive behavioral responses. Resolution of these two branches of signaling cascades has enabled strategies designed to identify pathway-selective drugs that may have unique therapeutic utilities. Keywords Kappa opioid receptor • Dynorphin • Arrestin • p38 MAPK
C. Chavkin (*) • S.S. Schattauer • J.R. Levin Department of Pharmacology, University of Washington, Seattle, WA 98195, USA e-mail: [email protected] V.V. Gurevich (ed.), Arrestins - Pharmacology and Therapeutic Potential, Handbook of Experimental Pharmacology 219, DOI 10.1007/978-3-642-41199-1_14, © Springer-Verlag Berlin Heidelberg 2014
281
282
C. Chavkin et al.
Abbreviations ASK1 β2AR CRF JNK ERK1/2 GRK GPCRs GIRK, Kir3 GFAP KOR rKOR hKOR MAPK MAP3K5 PKC 5HT
Apoptosis signal-regulating kinase 1 β2-Adrenergic receptor Corticotropin-releasing factor c-Jun N-terminal Kinase Extracellular signal-regulated kinase G-protein receptor kinase G-protein-coupled receptors G-protein-gated inwardly rectifying potassium channel Glial fibrillary a
Data Loading...