Biodegradable Metals From Concept to Applications
This book in the emerging research field of biomaterials covers biodegradable metals for biomedical applications. The book contains two main parts where each of them consists of three chapters. The first part introduces the readers to the field
- PDF / 1,791,329 Bytes
- 73 Pages / 439.37 x 666.142 pts Page_size
- 82 Downloads / 219 Views
For further volumes: http://www.springer.com/series/10111
Hendra Hermawan
Biodegradable Metals From Concept to Applications
123
Hendra Hermawan Faculty of Biomedical Engineering and Health Science Universiti Teknologi Malaysia Skudai 81310 Johor Malaysia
ISSN 2192-1091 ISBN 978-3-642-31169-7 DOI 10.1007/978-3-642-31170-3
ISSN 2192-1105 (electronic) ISBN 978-3-642-31170-3 (eBook)
Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012941639 Ó The Author(s) 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
Preface
Since their first introduction, metallic biomaterials have always been designed to be corrosion resistant. For decades, this paradigm has become the mainframe of the biomaterials world. It has been cited in thousands of scientific papers and taught in hundreds of courses of materials for biomedical devices. It has also been followed by industries in developing millions of medical devices until today. Nowadays, with the advent of tissue engineering, biomaterials are envisaged to actively interact with the body. Metallic biomaterials are no more required to be inert but they should be able to assist and promote the healing process. In many cases, they should do their job and step away thereafter. This idea opens an
Data Loading...