Cardiac PET Imaging: Current Status and Limitations

Since the birth of the first commercial Positron Emission Tomography (PET) scanner in 1975, PET scan technology has come a long way, and entered the era of clinical applications in the late 1980s. Various clinical applications continue to evolve. Currentl

  • PDF / 520,329 Bytes
  • 13 Pages / 547.087 x 737.008 pts Page_size
  • 102 Downloads / 222 Views

DOWNLOAD

REPORT


Cardiac PET Imaging: Current Status and Limitations

33

Ishtiaque H Mohiuddin and Assad Movahed

Contents

33.1 33.2 33.3 33.4 33.5 33.6 33.7 33.8 33.9 33.10. 33.11 33.11.1 33.11.2 33.11.3 33.11.4 33.11.5 33.12

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . .   387 Principle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   388 Clinical Applications   . . . . . . . . . . . . . . . . . .   388 Positron Emission Tomography in Assessment of Viability  . . . . . . . . . . . . . . .   389 FDG-SPECT Imaging  . . . . . . . . . . . . . . . . . .   390 Fatty Acid Imaging  . . . . . . . . . . . . . . . . . . . .   391 Comparison with Non-nuclear Techniques    392 Implications of Detecting Viable Myocardium   . . . . . . . . . . . . . . . . . . . . . . . . .   392 Cardiac Neurotransmission Imaging  . . . . .   393 Recommendations  . . . . . . . . . . . . . . . . . . . . .   393 Role of Metabolic PET Imaging in the Study of Specific Disease Processes  . . . . . . . . . . . .   394 Coronary Artery Disease  . . . . . . . . . . . . . . .   394 Left Ventricular Hypertrophy  . . . . . . . . . . . .   394 Dilated Cardiomyopathy (DCM)/Heart Failure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   394 Obesity-Insulin Resistance  . . . . . . . . . . . . . .   395 Diabetes Mellitus  . . . . . . . . . . . . . . . . . . . . . .   395 Future Trends  . . . . . . . . . . . . . . . . . . . . . . . . .   395 References  . . . . . . . . . . . . . . . . . . . . . . . . . . .   395

33.1

Introduction Since the birth of the first commercial Positron Emission Tomography (PET) scanner in 1975, PET scan technology has come a long way, and entered the era of clinical applications in the late 1980s. Various clinical applications continue to evolve. Currently, PET imaging plays an important role in the clinical evaluation of patients with known or suspected ischemic heart disease. It produces images of molecular-level physiological function, which can be used to measure many vital processes, including glucose metabolism, blood flow and perfusion, and oxygen utilization. This exciting technology extends the capabilities of other advanced imaging modalities such as echocardiogram, MRI and CT. For example, it uses proven tomographic algorithms to display data as cross-sectional images in any plane. These images represent the distribution of internal radiotracers (Fig. 33.1). Unlike anatomical imaging modalities such as CT and MRI, PET permits the assessment of chemical and physiological changes related to metabolism. This is important because a functional change often predates structural changes in tissues. PET images may therefore demonstrate pathological changes long before they would be revealed by CT and MRI. Unlike traditional nuclear medicine, PET uses unique radiopharmaceuticals, or “tracers,” labeled with isotopes, which are the basic elements of biological substrates. The positron-emitting radionuclides of the biologically ubiquitous elements oxygen (O15), carbon (C11), and nitrogen (N13), as well a