Centromeres: Sequences, Structure, and Biology
Although technological advances have continued to change the speed, cost, and number of plant genomes sequenced (see Flagel and Blackman 2012, this volume), parts of genomes remain to be sequenced and explored. Even the best-sequenced plant genomes, inclu
- PDF / 280,929 Bytes
- 12 Pages / 595.276 x 790.866 pts Page_size
- 40 Downloads / 160 Views
Centromeres: Sequences, Structure, and Biology Cory D. Hirsch and Jiming Jiang
Contents
4.1
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 4.2.1 4.2.2 4.2.3
DNA Composition of Plant Centromeres . . . . . . . . . . . . . . . . Satellite Repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Centromeric Retrotransposons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transcription of Centromeric Repeats . . . . . . . . . . . . . . . . . . . . . .
60 60 60 61
4.3 Centromeric Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 CENH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 CENP-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4
Structure and Organization of Centromeric DNA . . . . . 63
4.5 4.5.1 4.5.2 4.5.3
Centromere Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamics of Centromeric Repeats . . . . . . . . . . . . . . . . . . . . . . . . . From Neocentromeres to Mature Centromeres . . . . . . . . . . . . Rice Centromere 8, a Case Study for Plant Centromere Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64 64 64 65
4.6
Epigenetic Landscape of Centromeres . . . . . . . . . . . . . . . . . . . 65
4.7
Closing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.D. Hirsch (*) Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison 53706, WI, USA e-mail: [email protected] J.F. Wendel et al. (eds.), Plant Genome Diversity Volume 1, DOI 10.1007/978-3-7091-1130-7_4, # Springer-Verlag Wien 2012
Introduction
Although technological advances have continued to change the speed, cost, and number of plant genomes sequenced (see Flagel and Blackman 2012, this volume), parts of genomes remain to be sequenced and explored. Even the best-sequenced plant genomes, including Arabidopsis thaliana and rice, are missing 7–8% of their total genomic information (Kaul et al. 2000; Goff et al. 2002; Yu et al. 2002). One chromosomal region not often sequenced in genome projects is the centromere. Centromeres of almost all higher eukaryotes contain large stretches (up to several megabases) of tandemly repeated arrays of satellite DNA and retrotransposons. Such long arrays of highly homogenized repetitive DNA sequences cannot readily be cloned, sequenced, and assembled using the currently available cloning and sequencing technologies. The centromere is a chromosomal site for the assembly of the kinetochore, to which spindle fibers attach during cell division. Thus, centromeres play a key role in chrom
Data Loading...