Continuum Mechanics
This concise textbook develops step by step the fundamental principles of continuum mechanics. Emphasis is on mathematical clarity, and an extended appendix provides the required background knowledge in linear algebra and tensor calculus. After introducin
- PDF / 921,478 Bytes
- 9 Pages / 439.32 x 666.12 pts Page_size
- 84 Downloads / 263 Views
1. Antman, S. S.: Nonlinear Problem s of Elasti city, Springer-Verlag, New York (1995) . 2. Barbera , E .: On the principle of minimal ent ropy production for Navier-StokesFour ier fluid s, Continuum Mech. Th errnodyn. 11, 327-330 (1999) 3. Batra, R. C .: A thermodyn ami c theory of rigid heat cond uct ors, Arch. Rational Mech. A nal . 53, 359-3 65 (1974). 4. Beatty, M. F .: A class of uni versal relations for cons trained isotropic elast ic mater ials , A cta Mech. 80, 299-312 (1989) . 5. Berberi an , S. K. : Introductio n to Hilbert Space, Oxford Un iversity Press, New York (1961) . 6. Bh atnagar , P . L.; Gross, E . P .; Krook, M.: A model for collision processes in gases . I. Small amplitude processes in charged and neutral on e-component systems. Phys. R ev. 94. 511-525 (1954) . 7. Boelher, J. P.: On irreducib le representations for isotropic scalar fun ct ions , ZAMM 57, 323-327 (1977). 8. Capriz, G .; Podio-Guidugli , P.: Internal con straints, Appendix 3A , Rational Th ermodynamics, 2nd edit ion, ed ited by C . True sde ll, Springer , New YorkBerlin (1984) . 9. Coleman, B. D. ; Mizel, V. J .: On the general theory of fading memory, Arch. Rational Mech. Anal. 29, 18-31 (1968) . 10. Co lem an , B. D.; Noll , W .: Foundations of linear visco elasticity, R ev. Modem Phy s. 33, 239-249 (1961) . 11. Coleman, B. D.; Noll, W .: The thermodyn amics of elast ic materi als with heat cond uct ion a nd viscosit y, Arch. Rational M ech. Anal. 13, 167-178 (1963) . 12. Courant , R.; Hilb ert, D.: Method of Math ematical Physics, Vol. II. Interscience Publish ers , New York (1962) . 13. Dafermos, C .: Hyperbolic Con servation Laws in Cont inuum Physics, Springer, Berlin-Heidelb erg (2000). 14. de Groot, S. R. ; Ma zur , P .: Non- Equilibrium Th ermodynamics , North-Holland, Amsterdam (1963) . 15. Dreyer , W .: Maximiza tion of the ent ropy in non- equilibrium, J. Phys. A : Math. Gen. 20, 6505-6517 (1987) . 16. Ericksen , J . L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. 34, 126-128 (1955) . 17. Ericksen , J . L.: Inversion of a perfectly elast ic spherical shell, Z. A ngew. Math. Mech, 35, 382-385 (1955). 18. Ericksen , J . L.: Introduction to Th ermodynamics of Solids , Chapman & Hall, London (1991). 19. Eringen , A. C .: Continuum Physics, Vol. 1, Acad emic Press, New York (1976) . 20. Eshelby, J . D.: The elastic energy-moment um t ensor. J. Elasticity, 5, 321-335 (1975) .
290
References
21. Fisher, A. E. ; Marsden, J . E.: The Einstein evolution equation as a first order quasilinear symmetric hyperbolic system , Comm. Math . Phys. 28, 1-38 (1972). 22. Friedrichs , K. D.; Lax , P. D.: System of conservation equations with a convex ext ens ion , Proc. Nat. Acad. Sci. 68, 1686-1688 (1971). 23. Gibbs, J. W. : On the equilibrium of heterogeneous substances. Scientific Papers of J. Willard Gibbs. Vol. 1, Dover , New York (1961). 24. Grad , H.: Principles of the kinetic theory of gases, Handbu ch der Physik, Vol. XII , edited by S. Fliigge, Springer, Berlin-Heidelber
Data Loading...