Introduction to Relativistic Continuum Mechanics

This mathematically-oriented introduction takes the point of view that students should become familiar, at an early stage, with the physics of relativistic continua and thermodynamics within the framework of special relativity. Therefore, in addition to s

  • PDF / 8,681,030 Bytes
  • 347 Pages / 441 x 666 pts Page_size
  • 8 Downloads / 262 Views

DOWNLOAD

REPORT


ecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching – quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas • to be a source of advanced teaching material for specialized seminars, courses and schools Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia. Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer: Christian Caron Springer Heidelberg Physics Editorial Department I Tiergartenstrasse 17 69121 Heidelberg / Germany [email protected]

G. Ferrarese D. Bini

Introduction to Relativistic Continuum Mechanics

ABC

Authors Donato Bini Istituto per le Applicazioni del Calcolo ‘Mauro Picone’ CNR Viale del Policlinico, 137 00161 Roma, Italy [email protected]

Giorgio Ferrarese Università Roma La Sapienza Dipartimento di Matematica Piazzale Aldo Moro, 2 00185 Roma, Italy [email protected]

G. Ferrarese and D. Bini, Introduction to Relativistic Continuum Mechanics, Lect. Notes Phys. 727 (Springer, Berlin Heidelberg 2008), DOI 10.1007/978-3-540-73168-9

Library of Congress Control Number: 2007929739 ISSN 0075-8450 ISBN 978-3-540-73166-5 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2008  The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relev