De novo assembly of transcriptome and genome-wide identification reveal GA 3 stress-responsive WRKY transcription factor

  • PDF / 3,883,150 Bytes
  • 15 Pages / 595.276 x 790.866 pts Page_size
  • 53 Downloads / 211 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

De novo assembly of transcriptome and genome-wide identification reveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute (Corchorus capsularis) Lilan Zhang1,2,3, Xuebei Wan1,2, Yi Xu1,2,3, Sylvain Niyitanga1, Jianmin Qi1 and Liwu Zhang1,2,3*

Abstract Background: WRKY is a group of transcription factors (TFs) that play a vital role in plant growth, development, and stress tolerance. To date, none of jute WRKY (CcWRKY) genes have been identified, even if jute (Corchorus capsularis) is one of the most important natural fiber crops in the world. Little information about the WRKY genes in jute is far from sufficient to understand the molecular mechanism of bast fiber biosynthesis. Results: A total of 244,489,479 clean reads were generated using Illumina paired-end sequencing. De novo assembly yielded 90,982 unigenes with an average length of 714 bp. By sequence similarity searching for known proteins, 48,896 (53.74%) unigenes were annotated. To mine the CcWRKY TFs and identify their potential function, the search for CcWRKYs against the transcriptome data of jute was performed, and a total of 43 CcWRKYs were identified in this study. The gene structure, phylogeny, conserved domain and three-dimensional structure of protein were analyzed by bioinformatics tools of GSDS2.0, MEGA7.0, DNAMAN5.0, WebLogo 3 and SWISS-MODEL respectively. Phylogenetic analysis showed that 43 CcWRKYs were divided into three groups: I, II and III, containing 9, 28, and 6 members respectively, according to the WRKY conserved domain features and the evolution analysis with Arabidopsis thaliana. Gene structure analysis indicated that the number of exons of these CcWRKYs varied from 3 to 11. Among the 43 CcWRKYs, 10, 2, 2, and 14 genes showed higher expression in leaves, stem sticks, stem barks, and roots at the vigorous vegetative growth stage, respectively. Moreover, the expression of 21 of 43 CcWRKYs was regulated significantly with secondary cell wall biosynthesis genes using FPKM and RT-qPCR by GA3 (Continued on next page)

* Correspondence: [email protected]; [email protected] 1 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any m