Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration
- PDF / 2,774,868 Bytes
- 12 Pages / 595.276 x 790.866 pts Page_size
- 84 Downloads / 211 Views
RESEARCH
Open Access
Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration Mi Ran Choi1, Jasmin Sanghyun Han1, Yeung-Bae Jin2, Sang-Rae Lee2, In Young Choi3,4, Heejin Lee1, Hyun Cho1 and Dai-Jin Kim1,3*
Abstract Background: Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sexdependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods: After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results: Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcoholtreated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions: These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics. Keywords: Alcohol, Doublecortin, Hippocampus, MicroRNA, Sex differences
* Correspondence: [email protected] 1 Department of Psychiatry, Seoul St. Mary’s Hospital, The Catholic University of Korea College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea 3 Department of Medical Informatics, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Data Loading...