Energy aspects of a lead blast furnace

  • PDF / 897,838 Bytes
  • 9 Pages / 583 x 777.28 pts Page_size
  • 90 Downloads / 221 Views

DOWNLOAD

REPORT


M E A S U R E M E N T S of g a s c o m p o s i t i o n , t e m p e r a t u r e a n d p r e s s u r e as a f u n c t i o n o f p o s i t i o n r e l a t i v e to t h e b e d s u r f a c e i n t h e l e a d b l a s t f u r n a c e of B r u n s w i c k Mining a n d Smelting Ltd., Belledune, New Brunswick, C a n a d a h a v e b e e n i n t e r p r e t e d in t e r m s o f a n o x y g e n p o t e n t i a l , p Q - p o s i t i o n d i a g r a m f r o m w h i c h the t h e r modynamic driving f o r c e for the v a r i o u s reduction r e a c t i o n s w e r e e v i d e n t .1 In p a r t i c u l a r , i t w a s n o t e d that t h e t h e r m o d y n a m i c d r i v i n g f o r c e f o r the r e d u c t i o n of l e a d o x i d e w a s l a r g e (L 1501 t o 12001 k J m o l-~) t h r o u g h o u t the b e d o f t h e f u r n a c e , i n c o n t r a s t t o t h e r e l a t i v e l y s m a l l d r i v i n g f o r c e m a i n t a i n e d in a n i r o n b l a s t f u r n a c e f o r t h e r e d u c t i o n of F e O ( 1101 t o 120 I k J mol-X). T h e o x y g e n p o t e n t i a l o f the g a s p h a s e i s m a i n t a i n e d a t a l o w l e v e l i n the l e a d b l a s t f u r n a c e i n o r d e r t o r e d u c e F e III, p r e s e n t i n s u b s t a n t i a l q u a n t i t i e s i n t h e s i n t e r f e e d , t o F e II i n o r d e r t o i m p r o v e slag fluidity. It was also n o t e d t h a t f o r b o t h f u r n a c e s , t h e t h e r m o dynamic driving f o r c e for the "solution l o s s " reaction;

CO2 + C = 2CO

[I]

was large (about 11501 kJ tool-~) at the tuyere level decreasing numerically to zero just below the stockline. According to thermodynamic principles, the minimum energy necessary to accomplisha reaction is t h a t c o r r e s p o n d i n g to i n f i n i t e s i m a l d e p a r t u r e f r o m e q u i l i b r i u m f o r that r e a c t i o n . T h i s p r i n c i p l e h a s b e e n s u b s t a n t i a t e d i n r e s p e c t of t h e i r o n b l a s t f u r n a c e by M e y e r et a l2 w h o h a v e n o t e d that t h e o v e r a l l f u e l e f f i c i e n c y i s e x t r e m e l y s e n s i t i v e t o the d e g r e e t o w h i c h e q u i l i b r i u m i s a p p r o a c h e d b e t w e e n the f u r n a c e g a s e s a n d the F e O + F e s o l i d s . B y t h e a b o v e c r i t e r i o n , t h e f u e l e f f i c i e n c y of t h e l e a d b l a s t f u r n a c e , in w h i c h t h e p r i m a r y p u r p o s e is t h e r e d u c t i o n o f P b O w o u l d be e x p e c t e d t o be m u c h JANICE E. COWPERTHWAITE is Chemical Engineer, Hudson's Bay Oil and Gas, Calgary, Alberta, Canada, P E T E R J. DUGDALE is with PetroCanada, Calgary, CHRISTIAN J. F. LANDRY is Chemical Engineer, New Bunswick International Paper, Dalhousie, New Brunswick, Canada, DAVID R. MORRIS and FRANK R~ STEWARD are Professors, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, and TIMOTHY C. W. WILSON is Chemical Engineer, Dow Chemical of Canada Ltd., Sarnia, Ontario, Canada. D. R