Energy Harvesting Systems Principles, Modeling and Applications

Energy Harvesting Systems: Principles, Modelling and Applications Edited by: Tom Kazmierski Steve Beeby Kinetic energy harvesting converts movement or vibrations into electrical energy, enables battery free operation of wireless sensors and autonomous dev

  • PDF / 9,310,030 Bytes
  • 169 Pages / 439.37 x 666.142 pts Page_size
  • 91 Downloads / 332 Views

DOWNLOAD

REPORT


Tom J. Ka´zmierski · Steve Beeby Editors

Energy Harvesting Systems Principles, Modeling and Applications

123

Editors Tom J. Ka´zmierski School of Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK [email protected]

Steve Beeby School of Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK [email protected]

ISBN 978-1-4419-7565-2 e-ISBN 978-1-4419-7566-9 DOI 10.1007/978-1-4419-7566-9 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938327 c Springer Science+Business Media, LLC 2011  All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Energy harvesting is the conversion of ambient energy present in the environment into electrical energy. It is identical in principle to large-scale renewable energy generation, for example, solar or wind power, but very different in scale. While large-scale power generation is concerned with megawatts of power, energy harvesting typically refers to micro- to milli-watts, i.e. much smaller power generation systems. The development of energy harvesting has been driven by the proliferation of autonomous wireless electronic systems. A classic example of such systems are wireless sensor nodes which combine together to form wireless sensor networks. Each sensor node typically comprises a sensor, processing electronics, wireless communications, and power supply. Since the system is by definition wireless and cannot be plugged into a mains supply, power has to be provided locally. Typically such a local power supply is provided a battery which on the face of it is convenient and low cost. However, batteries contain a finite supply of energy and require periodic replacement or recharging. This may be fine in individual deployments but across a wireless network containing a multitude of nodes batteries are clearly not attractive. Furthermore, the need to replace batteries means the wireless system has to be accessible which may not be possible or may compromise performance. Finally, there are environmental concerns about disposing of batteries. Energy harvesting was developed, therefore, as a method for replacing or augmenting batteries. By converting ambient energy in the environment, the energy harvester can p