Epitaxial Crystal Growth: Methods and Materials

The epitaxial growth of thin films of material for a wide range of applications in electronics and optoelectronics is a critical activity in many industries. The original growth technique used, in most instances, was liquid-phase epitaxy (LPE), as this wa

  • PDF / 1,441,942 Bytes
  • 31 Pages / 547.146 x 686 pts Page_size
  • 79 Downloads / 268 Views

DOWNLOAD

REPORT


Epitaxial Cryst

14. Epitaxial Crystal Growth: Methods and Materials

14.1

Liquid-Phase Epitaxy (LPE) ................... 14.1.1 Introduction and Background ..... 14.1.2 History and Status ..................... 14.1.3 Characteristics .......................... 14.1.4 Apparatus and Techniques ......... 14.1.5 Group IV................................... 14.1.6 Group III–V............................... 14.1.7 Group II–VI............................... 14.1.8 Atomically Flat Surfaces ............. 14.1.9 Conclusions ..............................

271 271 272 272 273 275 276 278 280 280

14.2

Metalorganic Chemical Vapor Deposition (MOCVD) .............................................. 14.2.1 Introduction and Background ..... 14.2.2 Basic Reaction Kinetics .............. 14.2.3 Precursors ................................ 14.2.4 Reactor Cells ............................. 14.2.5 III–V MOCVD .............................. 14.2.6 II–VI MOCVD .............................. 14.2.7 Conclusions ..............................

280 280 281 283 284 286 288 290

Molecular Beam Epitaxy (MBE) .............. 14.3.1 Introduction and Background ..... 14.3.2 Reaction Mechanisms ................ 14.3.3 MBE Growth Systems.................. 14.3.4 Gas Sources in MBE.................... 14.3.5 Growth of III–V Materials by MBE 14.3.6 Conclusions ..............................

290 290 291 293 295 296 299

References .................................................. 299

This chapter outlines the three major epitaxial growth processes used to produce layers of material for electronic, optical and optoelectronic applications. These are liquid-phase epitaxy (LPE), metalorganic chemical vapor deposition (MOCVD) and molecular beam epi-

taxy (MBE). We will also consider their main variants. All three techniques have advantages and disadvantages when applied to particular systems, and these will be highlighted where appropriate in the following sections.

14.3

14.1 Liquid-Phase Epitaxy (LPE) 14.1.1 Introduction and Background Liquid-phase epitaxy (LPE) is a mature technology and has unique features that mean that it is still applicable for use in niche applications within certain device technolo-

gies. It has given way in many areas, however, to various vapor-phase epitaxy techniques, such as metalorganic vapor phase, molecular beam and atomic layer epitaxies (MOVPE, MBE, ALE), see Sects. 14.2 and 14.3. When selecting an epitaxial growth technology for a par-

Part B 14

The epitaxial growth of thin films of material for a wide range of applications in electronics and optoelectronics is a critical activity in many industries. The original growth technique used, in most instances, was liquid-phase epitaxy (LPE), as this was the simplest and often the cheapest route to producing device-quality layers. These days, while some production processes are still based on LPE, most research into and (increasingly) much of the production of electronic and optoelectronic devices now centers on metalorganic chemical vapor deposition (MOCVD) and molecular