Etale Homotopy
- PDF / 7,539,006 Bytes
- 173 Pages / 576 x 784.8 pts Page_size
- 62 Downloads / 235 Views
		    100 M. Artin · B. Mazur
 
 Etale Homotopy
 
 Springer-Verlag Berlin Heidelberg New York Tokyo
 
 Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
 
 100 M. Artin · B. Mazur
 
 Etale Homotopy
 
 Springer-Verlag Berlin Heidelberg New York Tokyo
 
 Authors Michael Artin Massachusetts Institute of Technology Rm 2-239, Cambridge, MA 02139, USA Barry Mazur Harvard University One Oxford St., Cambridge, MA 02138, USA
 
 1st Edition 1969 2nd Printing 1986
 
 ISBN 3-540-04619-4 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-04619-4 Springer-Verlag New York Heidelberg Berlin Tokyo
 
 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concerned, specifically those of translation. reprinting. re-use of illustrations. broadcasting. reproduction by photocopying machine or similar means. and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to 'Verwertungsgesellschaft Wort". Munich.
 
 © by Springer-Verlag Berlin Heidelberg 1969 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210
 
 Contents
 
 ................. ...................
 
 1.
 
 A glossary of the categories in which we shall work, and fibre resolutions.
 
 2.
 
 Pro-objects in the homotopy category••••••••••••••••••••••• 20
 
 3.
 
 Completions ••
 
 4.
 
 Cohomological criteria for
 
 5.
 
 Completions and fib rations.
 
 6.
 
 Homotopy groups of completions ••••••••••••••••••••••••••••• 70
 
 7.
 
 Stable results.
 
 6
 
 ....... .... ................... ..... ..... ..... 25
 
 g -isomorphism••••••••••••••••• 35 ......... .. .... ....... ....... .. 60
 
 8.
 
 ........................................... 75 Hypercove rings. ........................................... 93 The Verdier functor •••• ............................... ••••• 111
 
 10.
 
 The fundamental group••••••••••.••••••••••••••••••••••••••• 117
 
 11.
 
 A profiniteness theorem•••••••••••••••••••••••••••••••••••• 124
 
 12.
 
 Comparison theorems •••••••••••••••••••••••••••••••••••••••• 129
 
 Appendix: 1.
 
 Lim1 ts •.................................................... 147
 
 2.
 
 Pro-objects and pro-representable functors.
 
 3.
 
 Morphisms
 
 4.
 
 Exactness
 
 ............... .154 of pro-objects ••••••••••••••••• . ...... ..........•159 properties of the pro-category. ................. .163
 
 References .................................•.....•.........•... 167
 
 - 1 -
 
 These notes are an expansion of the results announced in [2].
 
 The material was presented in a seminar at Harvard
 
 University during the academic year 165- 166.* Our aim is to study the analogues of homotopy invariants which can be obtained from varieties by using the etale topology of Grothendieck.
 
 Using the constructions of Lubkin [21]
 
 or Verdier [3], we associate to any locally noetherian prescheme
 
 X a pro-object in the homotopy category of simplicial
 
 sets (cf. 2), which we call the etale homotopy prescheme
 
 X.
 
 of the
 
 For a normal variety over the field of complex
 
 numbers, we show that
 
 Xe t is a certain profinite c		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	