Foundations of Theoretical Mechanics II Birkhoffian Generalizations

In the preceding volume,l I identified necessary and sufficient conditions for the existence of a representation of given Newtonian systems via a variational principle, the so-called conditions of variational self-adjointness. A primary objective of this

  • PDF / 33,709,725 Bytes
  • 386 Pages / 439 x 666 pts Page_size
  • 47 Downloads / 237 Views

DOWNLOAD

REPORT


W. Beiglbock E. H. Lieb T. Regge W. Thirring Series Editors

Ruggero Maria Santi II i

Foundations of Theoretical Mechanics II Birkhoffian Generalization of Hamiltonian Mechanics

[$]

Springer-Verlag New York

Heidelberg

Berlin

Ruggero Maria Santilli The Institute for Basic Research 96 Prescott Street Cambridge, MA 02138 U.S.A. Editors:

Wolf BeiglbOck

Elliott H. Lieb

Institut fUr Angewandte Mathematik Universitat Heidelberg 1m Neuenheimer Feld 5 D-6900 Heidelberg I Federal Republic of Germany

Department of Physics Joseph Henry Laboratories Princeton University P.O. Box 708 Princeton, NJ 08540 U.S.A.

Tullio Regge

Walter Thirring

Universita di Torino Istituto di Fisica Teorica C.so M. d'Azeglio, 46 10125 Torino Italy

Institut fUr Theoretische Physik der Universitat Wien Boltzmanngasse 5 A-I090 Wien Austria

Library of Congress Cataloging in Publication Data Santilli, Ruggero Maria, 1935Birkhoffian generalization of Hamiltonian mechanics. (F oundations of theoretical mechanics; 2) (Texts and monographs in physics) Bibliography: p. Includes index. 1. Mechanics. 2. Inverse problems (Differential equations) 3. Hamiltonian systems. I. Title. II. Series: Santilli, Ruggero Maria, 1935- . Foundation oftheoretical mechanics; 2. III. Series: Texts and monographs in physics. QA805.S254 1978 vol. 2 531s [531J 82-19319 [QA808J All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

© 1983 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1983 Typeset by Composition House Limited, Salisbury, England. 9 8 7 6 5 432 I ISBN-13: 978-3-642-86762-0 e-ISBN-13: 978-3-642-86760-6 001: 10.1007/978-3-642-86760-6

'""

~

~

~

'"

.~

~

~

"t' ~

j

~ '' oaP oa>

Representation via Birkhoff's equations (a = (r, p»

h(3)

h(Z»)( t" - p'/mk )} • = h(4) Pk - f. - Fk SA

Self-adjoint general form

1

Pk - [k(t, r, p) - Fk(t, r, p)

{(ll

(

1

t, t)]SA -

Non-self-adjoint normal form

{[mki'k - Mt,

Essentially non-self-adjoint Newtonian systems

=

at

oR.

n.o = -no.

R. da· - B dt

nz = dRio

Rl =

0, 1,

da>,

oRp oR. Q.P = oa· - oaP' ~

oa·

v

1\

2, ... , 6N,

ji,

da P

=-+-

oB

0,

= (t, r, p);

noo =

a

p>

Contact geometry

nz = !n

V>

::l



~

~

..0

tTl

V>

o ~

::r

~

co ::;.

0\ 0\

Figure4.1 (A schematic view of the direct universality of Birkhoff's equations for local Newtonian systems). The physical systems in our environment (such as motions in atmosphere, spinning tops with drag torques, damped oscillations, etc.) generally violate the integrability conditions for the existence of a Hamiltonian representation in the coordinate and time variables of the observer. This fact, established in Section 4.1, is clear evidence of the insufficiency in mechanics of Hamilton's equations in their contemporary formulation (that without external terms). A central objective of this volume is the identification of a generalization of Hamilton's equations which