Fuzzballs and observations
- PDF / 1,122,506 Bytes
- 36 Pages / 439.37 x 666.142 pts Page_size
- 1 Downloads / 190 Views
Fuzzballs and observations Daniel R. Mayerson1 Received: 28 October 2020 / Accepted: 16 November 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020
Abstract The advent of gravitational waves and black hole imaging has opened a new window into probing the horizon scale of black holes. An important question is whether string theory results for black holes can predict interesting and observable features that current and future experiments can probe. In this article I review the budding and exciting research being done on understanding the possibilities of observing signals from fuzzballs, where black holes are replaced by string-theoretic horizon-scale microstructure. In order to be accessible to both string theorists and black hole phenomenologists, I give a brief overview of the relevant observational experiments as well as the fuzzball paradigm in string theory and its explicitly constructable solutions called microstate geometries. Keywords String theory · Supergravity · Black holes · Fuzzballs · Microstate geometries · Black hole microstates · Gravitational waves · Gravitational wave observations · Black hole imaging · EHT · LISA · Gravitational multipoles · Tidal Love numbers · Echoes · Exotic compact objects · Multicentered geometries · Bubbled geometries · Superstrata · Quasinormal modes · Geodesics · Tidal effects · Black hole observations
Contents 1 Introduction . . . . . . . . . . . . . 1.1 Gravitational waves . . . . . . . 1.2 Black hole imaging . . . . . . . 2 Fuzzballs and microstate geometries . 2.1 The fuzzball paradigm . . . . . 2.2 Microstate geometries . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
This article belongs to a Topical Collection: The Fuzzball Paradigm.
B 1
Daniel R. Mayerson [email protected] Institut de Physique Théorique, CEA, CNRS, Orme des Merisiers, Université Paris Saclay, 91191 Gif sur Yvette, France 0123456789().: V,-vol
123
115
Page 2 of 36
2.2.1 Multicentered bubbled geometries . 2.2.2 Superstrata . . . . . . . . . . . . . 2.2.3 Other microstate geometries . . . . 2.3 Limitations . . . . . . . . . . . . . . . . 2.3.1 Formation and evolution . . . . . . 2.3.2 Typicality . . . . . . . . . . . . . . 3 Echoes and quasinormal modes . . . . . . . . 3.1 Fuzzball echoes and quasinormal modes . 3.1.1 Relating AdS and flat space physics 3.2 Echoes in typical states? . . . . . . . . . 4 Multipoles and tidal Love numbers . . . . . . 4.1 Multipoles . . . . . . . . . . . . . . . . . 4.2 Fuzzball multipoles . . . . . . . . . . . . 4.3 Tidal Love numbers . . . . . . . . . . . . 5 Geodesics and shadows . . . . . . . . . . . . 5.1 Geodesics trapping and in
Data Loading...