Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence dat

  • PDF / 3,228,873 Bytes
  • 14 Pages / 595.276 x 790.866 pts Page_size
  • 41 Downloads / 199 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data Ali Jalil Sarghale1,2, Mohammad Moradi Shahrebabak1*, Hossein Moradi Shahrebabak1, Ardeshir Nejati Javaremi1, Mahdi Saatchi3,4, Majid Khansefid5 and Younes Miar2*

Abstract Background: Methane emission by ruminants has contributed considerably to the global warming and understanding the genomic architecture of methane production may help livestock producers to reduce the methane emission from the livestock production system. The goal of our study was to identify genomic regions affecting the predicted methane emission (PME) from volatile fatty acids (VFAs) indicators and VFA traits using imputed whole-genome sequence data in Iranian Holstein cattle. Results: Based on the significant-association threshold (p < 5 × 10− 8), 33 single nucleotide polymorphisms (SNPs) were detected for PME per kg milk (n = 2), PME per kg fat (n = 14), and valeric acid (n = 17). Besides, 69 genes were identified for valeric acid (n = 18), PME per kg milk (n = 4) and PME per kg fat (n = 47) that were located within 1 Mb of significant SNPs. Based on the gene ontology (GO) term analysis, six promising candidate genes were significantly clustered in organelle organization (GO:0004984, p = 3.9 × 10− 2) for valeric acid, and 17 candidate genes significantly clustered in olfactory receptors activity (GO:0004984, p = 4 × 10− 10) for PME traits. Annotation results revealed 31 quantitative trait loci (QTLs) for milk yield and its components, body weight, and residual feed intake within 1 Mb of significant SNPs. Conclusions: Our results identified 33 SNPs associated with PME and valeric acid traits, as well as 17 olfactory receptors activity genes for PME traits related to feed intake and preference. Identified SNPs were close to 31 QTLs for milk yield and its components, body weight, and residual feed intake traits. In addition, these traits had high correlations with PME trait. Overall, our findings suggest that marker-assisted and genomic selection could be used to improve the difficult and expensive-to-measure phenotypes such as PME. Moreover, prediction of methane emission by VFA indicators could be useful for increasing the size of reference population required in genome-wide association studies and genomic selection. Keywords: Methane emission, Whole-genome sequence, Iranian Holstein cattle, Genome-wide association study, Volatile fatty acids * Correspondence: [email protected]; [email protected] 1 Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran 2 Department of Animal Science and Aquaculture, Dalhousie University, Truro B2N 5E3, Canada Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as lon