Green Building Guidebook for Sustainable Architecture
An important consideration for energy-efficient buildings is their primary energy requirements over the entire life cycle. How to determine this? What integrative factors influence the performance of a healthy and sustai
- PDF / 2,227,053 Bytes
- 7 Pages / 674.646 x 864.567 pts Page_size
- 37 Downloads / 262 Views
Prof. Dr. Michael Bauer Peter Mösle Dr. Michael Schwarz Drees & Sommer Advanced Building Technologies GmbH Obere Waldplätze 11 70569 Stuttgart Germany [email protected]
ISBN 978-3-642-00634-0 e-ISBN 978-3-642-00635-7 DOI 10.1007/978-3-642-00635-7 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938435 Original German edition published by Callwey Verlag, Munich, 2007 © Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: wmxDesign GmbH, Heidelberg, according to the design of independent Medien-Design Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
By Michael Bauer, Peter Mösle and Michael Schwarz
Green Building – Guidebook for Sustainable Architecture
Table of Contents A
B
The Motivation behind the Green Building Idea
Green Building Requirements
Increased Public Focus on Sustainability and Energy Efficiency 10 Supportive Framework and General Conditions 12 CO 2 Emission Trade 13 Rating Systems for Sustainable Buildings 15 An integrated View of Green Buildings – Life Cycle Engineering 20
B1 Sustainable Design 24 Perceived Use defines the Concept 25 Relationship between Level of Well-Being and healthy Indoor Climate 26 Relationship between Comfort Level and Performance Ability 27 Operative Indoor Temperature in Occupied Rooms 28 Operative Temperature in Atria 30 Indoor Humidity 32 Air Velocity and Draught Risk 34 Clothing and Activity Level 35 Visual Comfort 36 Acoustics 40 Air Quality 42 Electromagnetic Compatibility 45 Individualized Indoor Climate Control 47
B2 Conscientious Handling of Resources 50 Energy Benchmarks as Target Values for Design 51 Fossils and Regenerative Energy Resources 52 Today’s Energy Benchmark – Primary Energy Demand for Indoor Climate Conditioning 53 Heating Energy Demand 54 Energy Demand for Water Heating 55 Cooling Energy Demand 56 Electricity Demand for Air Transport 57 Electricity Demand for Artificial Lighting 58 Future Energy Benchmark – Primary Energy Demand over the Life Cycle of a Building 59 Cumulative Primary Energy Demand of Building Materials 60 Primary Energy Demand – Use-related 61 Water Requirements 62
C
D
Design, Construction,
Data Loading...