Hyperspectral X-ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping

  • PDF / 766,981 Bytes
  • 8 Pages / 439.37 x 666.142 pts Page_size
  • 71 Downloads / 167 Views

DOWNLOAD

REPORT


Hyperspectral X‑ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping M. H. Carpenter1 · M. P. Croce1 · Z. K. Baker1 · E. R. Batista1 · M. P. Caffrey1 · C. J. Fontes1 · K. E. Koehler1 · S. E. Kossmann1 · K. G. McIntosh1 · M. W. Rabin1 · B. W. Renck1 · G. L. Wagner1 · M. P. Wilkerson1 · P. Yang1 · M. D. Yoho1 · J. N. Ullom2 · D. A. Bennett2 · G. C. O’Neil2 · C. D. Reintsema2 · D. R. Schmidt2 · G. C. Hilton2 · D. S. Swetz2 · D. T. Becker3 · J. D. Gard3 · J. Imrek3 · J. A. B. Mates3 · K. M. Morgan3 · D. Yan3 · A. L. Wessels3 · R. H. Cantor4 · J. A. Hall4 · D. T. Carver4 Received: 20 August 2019 / Accepted: 24 March 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract We are developing an imaging capability (“Hyperspectral X-ray Imaging”) for mapping chemical information (molecular formula, phase, oxidation state, hydration) that is based on ultra-high-resolution X-ray emission spectroscopy with large transition-edge sensor microcalorimeter arrays in the scanning electron microscope. By combining microcalorimeter arrays with hundreds of pixels, high-bandwidth microwave frequency-division multiplexing, and fast digital electronics for near real-time data processing, our goal is to enable measurements using laboratory-scale instrumentation rather than synchrotron beamlines. Our application focus here is on mapping the chemical form of uranium compounds on the nanoscale. We will present our approach to developing the Hyperspectral X-ray Imaging capability, progress toward a 128-pixel microwave multiplexed X-ray fluorescence instrument at LANL, and the path to high-throughput nanoscale chemical mapping. Keywords  Transition edge sensor · TES · X-ray emission spectroscopy · X-ray microanalysis · SEM · Safeguards science · X-ray mapping · EDS · Uranium

* M. H. Carpenter [email protected] 1

Los Alamos National Laboratory, Los Alamos, NM, USA

2

National Institute of Standards and Technology, Boulder, CO, USA

3

University of Colorado, Boulder, CO, USA

4

STAR Cryoelectronics, Santa Fe, NM, USA



13

Vol.:(0123456789)



Journal of Low Temperature Physics

1 Introduction Analysis of particles from the environment is essential to a range of applications, such as environmental monitoring, environmental transport, nuclear safeguards, and treaty verification [1–3]. Often, the analytes are structurally amorphous, and many of these applications include uranium-bearing compounds or minerals formed after weathering. A wide range of investigations report the use of synchrotron-based X-ray absorption spectroscopy for these studies, which can present challenges for timely measurements [4–8]. The laboratory-scale approach described here has the potential to make this type of analysis routine for many applications. Nanoscale imaging requires a nanoscale probe, which is generally only possible in small-scale instrumentation with an electron beam. Optical (UV/VIS/NIR, Raman, LIBS) and X-ray-excited (µXRF, XPS) methods do not provide the required submicron spatial resolution. Electro