Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series
- PDF / 2,593,726 Bytes
- 7 Pages / 595.276 x 790.866 pts Page_size
- 15 Downloads / 160 Views
ORIGINAL PAPER
Implementation of the three-dimensional printing technology in treatment of bone tumours: a case series Marijana Šimić Jovičić 1 & Filip Vuletić 2 & Tomislav Ribičić 1 & Sven Šimunić 1 & Tadija Petrović 3 & Robert Kolundžić 3 Received: 20 July 2020 / Accepted: 25 August 2020 # SICOT aisbl 2020
Abstract Purpose With the ability to overcome specific anatomical and pathological challenges, 3D printing technology is setting itself as an important tool in patient-specific orthopaedics, delivering anatomical models, patient-specific instruments, and custom-made implants. One of the most demanding procedures in limb salvage surgery is the reconstruction of bony defects after tumour resection. Even though still limited in clinical practice, early results of the use of 3D technology are gradually revealing its potentially huge impact in bone tumour surgery. Here, we present a case series illustrating our experience with the use of 3D printing technology in the reconstruction of bone defects after tumour resection, and its impact on cosmesis and quality of life. Methods We performed a retrospective analysis of 11 patients in whom a custom-made 3D-printed prosthesis was used to reconstruct a bone defect after resection for a bone tumour. Ten out of 11 patients were children (aged between 5 and 16 years) with osteosarcoma or Ewing sarcoma of the pelvis (2 children) or the arm (8 children), and one patient was a 67-year-old lady with a chondrosarcoma of the pelvis. All underwent wide resections resulting in considerable bone defects necessitating further reconstruction. Results Custom-made implants were extremely useful both in reconstruction of bone defects and in terms of cosmesis, recovery facilitation, and quality of life. In this respect, pelvic and humeral reconstructions with 3D-printed custom implants particularly showed a great potential. The mean follow-up was 33 months. Four patients died of disease (36%) and overall the major and minor complication rate was 54% (6 out of 11 patients). Three patients had implant dislocation (27% [3/11 cases]), one had legcompartment syndrome, and one patient reported limited range of motion. Only two out of 11 patients developed local recurrence. Conclusion Use of 3D customized implant helped us achieve two major goals in orthopaedic oncology—clear surgical resection and functional recovery with a good quality of life. Large studies with long-term follow-up are needed to reveal the value and future of 3D printing in orthopaedic oncology. Keywords 3D printing technology . Patient-specific orthopaedics . Bone tumour surgery . Bone reconstruction . Limb salvation
Introduction and background Most primary malignant bone tumours develop in the metaphysis of long bones, mainly around knee and proximal * Robert Kolundžić [email protected] 1
Department of Paediatric Orthopaedics, Children’s Hospital Zagreb, Zagreb, Croatia
2
Department of Orthopaedic Surgery, University Hospital Sveti Duh, Zagreb, Croatia
3
Clinic of Traumatology, Clinical Hospital Center Sis
Data Loading...