Interpolation Functors and Duality

  • PDF / 6,051,669 Bytes
  • 172 Pages / 468 x 684 pts Page_size
  • 40 Downloads / 225 Views

DOWNLOAD

REPORT


1208 Sten Kaijser Joan Wick Pelletier

Interpolation Functors and Duality

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Authors

Sten Kaijser Uppsala University, Department of Mathematics Thunbergsviigen 3, S-752 38 Uppsala, Sweden Joan Wick Pelletier York University, Department of Mathematics 4700 Keele Street, North York, Ontario, Canada, M3J 1P3

Mathematics Subject Classification (1980): 46M 15, 46M35 ISBN 3-540-16790-0 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-16790-0 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Kaijser, Sten.lnterpolation functors and duality. (Lecture notes in mathematics; 1208) Bibliography: p.lncludes index. 1. Lineartopological spaces. 2. Functor theory. I. Pelletier, Joan Wick, 1942-.11. Title. III. Series: Lecture notes in mathematics (Springer-Verlag); 1208. QA3.L28 no. 1208510 s 86-20242 [QA322] [515.7'3] ISBN 0-387-16790-0 (U.S.) This work is subject to copyriqht, All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210

CONTENTS

O.

Introduction

1

PART I I.

Preliminaries 1. 2. 3.

11.

7

12 16

The Real Method 1. 2. 3.

III.

The Setting Doolittle Diagrams, Couples, and Regular Couples Interpolation Spaces

The J- and K-methods The Duality Theorem The Equivalence Theorem

18 22 25

The Complex Method 1. 2.

The General Duality Theorem The Duality Theorem

33 38

PART II IV.

Categorical Notions 1. 2. 3. 4. 5.

V.

44

50

54 58 64

Finite Dimensional Doolittle Diagrams 1. 2. 3. 4.

VI.

Categories of Doolittle Diagrams Doolittle Diagrams of Banach Spaces Limits, Colimits, and Morphisms Functors and Natural Transformations Interpolation Spaces and Functors

I-dimensional Doolittle Diagrams and Applications The Structure Theorem Operators of Finite Rank Applications

73 79 84 86

Kan Extensions 1. 2. 3. 4. 5.

Definition Examples Computable Functors Aronszajn-Gagliardo Functors Computability of LanA

93 94 99 100 104

IV

VII.

Duality 1. 2. 3. 4. 5.

Dual Functors Descriptions of the Dual Functors Duality for Computable Functors Approximate Reflexivity Duals of Interpolation Functors

106 108 111 115 117

PART III VIII.

More About Duality 1. 2.

IX.

Comparison of Parts I and II Quasi-injectivity and Quasi-projectivity

123 126

The Classical Methods from a Categorical Viewpoint 1. 2. 3. 4.

Review of Results The Real Method Revisited The Complex Method Revisited The Dual Functor of C

e

132 133 143 154

Bibliography

160

List of Special Symbols and Abbreviations

162

Index

165

CHAPTER 0

INTRODUCTION

Duality is one of th