Interpolation Functors and Duality
- PDF / 6,051,669 Bytes
- 172 Pages / 468 x 684 pts Page_size
- 40 Downloads / 290 Views
		    1208 Sten Kaijser Joan Wick Pelletier
 
 Interpolation Functors and Duality
 
 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
 
 Authors
 
 Sten Kaijser Uppsala University, Department of Mathematics Thunbergsviigen 3, S-752 38 Uppsala, Sweden Joan Wick Pelletier York University, Department of Mathematics 4700 Keele Street, North York, Ontario, Canada, M3J 1P3
 
 Mathematics Subject Classification (1980): 46M 15, 46M35 ISBN 3-540-16790-0 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-16790-0 Springer-Verlag New York Berlin Heidelberg
 
 Library of Congress Cataloging-in-Publication Data. Kaijser, Sten.lnterpolation functors and duality. (Lecture notes in mathematics; 1208) Bibliography: p.lncludes index. 1. Lineartopological spaces. 2. Functor theory. I. Pelletier, Joan Wick, 1942-.11. Title. III. Series: Lecture notes in mathematics (Springer-Verlag); 1208. QA3.L28 no. 1208510 s 86-20242 [QA322] [515.7'3] ISBN 0-387-16790-0 (U.S.) This work is subject to copyriqht, All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210
 
 CONTENTS
 
 O.
 
 Introduction
 
 1
 
 PART I I.
 
 Preliminaries 1. 2. 3.
 
 11.
 
 7
 
 12 16
 
 The Real Method 1. 2. 3.
 
 III.
 
 The Setting Doolittle Diagrams, Couples, and Regular Couples Interpolation Spaces
 
 The J- and K-methods The Duality Theorem The Equivalence Theorem
 
 18 22 25
 
 The Complex Method 1. 2.
 
 The General Duality Theorem The Duality Theorem
 
 33 38
 
 PART II IV.
 
 Categorical Notions 1. 2. 3. 4. 5.
 
 V.
 
 44
 
 50
 
 54 58 64
 
 Finite Dimensional Doolittle Diagrams 1. 2. 3. 4.
 
 VI.
 
 Categories of Doolittle Diagrams Doolittle Diagrams of Banach Spaces Limits, Colimits, and Morphisms Functors and Natural Transformations Interpolation Spaces and Functors
 
 I-dimensional Doolittle Diagrams and Applications The Structure Theorem Operators of Finite Rank Applications
 
 73 79 84 86
 
 Kan Extensions 1. 2. 3. 4. 5.
 
 Definition Examples Computable Functors Aronszajn-Gagliardo Functors Computability of LanA
 
 93 94 99 100 104
 
 IV
 
 VII.
 
 Duality 1. 2. 3. 4. 5.
 
 Dual Functors Descriptions of the Dual Functors Duality for Computable Functors Approximate Reflexivity Duals of Interpolation Functors
 
 106 108 111 115 117
 
 PART III VIII.
 
 More About Duality 1. 2.
 
 IX.
 
 Comparison of Parts I and II Quasi-injectivity and Quasi-projectivity
 
 123 126
 
 The Classical Methods from a Categorical Viewpoint 1. 2. 3. 4.
 
 Review of Results The Real Method Revisited The Complex Method Revisited The Dual Functor of C
 
 e
 
 132 133 143 154
 
 Bibliography
 
 160
 
 List of Special Symbols and Abbreviations
 
 162
 
 Index
 
 165
 
 CHAPTER 0
 
 INTRODUCTION
 
 Duality is one of th		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	