Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities
- PDF / 13,538,926 Bytes
- 292 Pages / 468 x 683.759 pts Page_size
- 34 Downloads / 301 Views
		    1222 Anatole Katok Jean-Marie Strelcyn with the collaboration of F. Ledrappier and F. Przytycki
 
 Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities
 
 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
 
 Authors Anatole Katok Mathematics 253-37, California Institute of Technology Pasadena, CA 91125, USA Jean-Marie Strelcyn Universite Paris-Nord, Centre Scientifique et Polytechnique Departernent de Mathematiques Avenue 1.-B. Clement, 93430 Villetaneuse, France Francois Ledrappier Laboratoire de Probabilites, Universite Paris VI 4 Place Jussieu, 75230 Paris, France Feliks Przytycki Mathematical Institute of the Polish Academy of Sciences ul. Sniadeckich 8, 00-950 Warsaw, Poland
 
 Mathematics Subject Classification (1980): Primary: 28020, 34F05, 58F 11, 58F 15 Secondary: 34C35, 58F08, 58F18, 58F20, 58F22, 58F25 ISBN 3-540-17190-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-17190-8 Springer-Verlag New York Berlin Heidelberg
 
 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210
 
 TABLE OF CONTENTS Introduction
 
 V
 
 EXISTENCE OF INVARIANT MANIFOLDS FOR SMOOTH MAPS WITH SINGULARITIES
 
 PART I.
 
 (by A. KATOK and J.-M. STRELCYN) 1.
 
 Class of Transformations with Singularities
 
 2.
 
 Preliminaries
 
 3.
 
 Overcoming Influence of Singularities
 
 10
 
 4.
 
 The Proof of Lemma 3.3 and Related Topics
 
 19
 
 5.
 
 The Formulation of Pesin's Abstract Invariant Manifold Theorem
 
 24
 
 6.
 
 Invariant Manifolds for Maps Satisfying Conditions (1.1) - (1.3)
 
 25
 
 7.
 
 Some Additional Properties of Local Stable Manifolds
 
 35
 
 PART II.
 
 1
 
 5
 
 ABSOLUTE CONTINUITY
 
 41
 
 (by A. KATOK and J.-M. STRELCYN) 1.
 
 Introduction
 
 41
 
 2.
 
 Preliminary Remarks and Notations
 
 42
 
 3.
 
 Some Facts from Measure Theory and Linear Algebra
 
 46
 
 4.
 
 Formulation of the Absolute Continuity Theorem and a Sketch of the Proof
 
 55
 
 5.
 
 Start of the Proof - I
 
 62
 
 6.
 
 The First Main Lemma
 
 65 79
 
 7.
 
 Start of the Proof - II
 
 8.
 
 Projection and Covering Lemmas
 
 9.
 
 Comparison of the Volumes
 
 88 107
 
 10.
 
 The Proof of the Absolute Continuity Theorem
 
 117
 
 11.
 
 Absolute Continuity of Conditional Measures
 
 130
 
 12.
 
 Infinite Dimensional Case
 
 138
 
 13.
 
 Final Remarks
 
 154
 
 PART III.
 
 THE ESTIMATION OF ENTROPY FROM BELOW THROUGH LYAPUNOV CHARACTERISTIC EXPONENTS
 
 157
 
 (by F. LEDRAPPIER and J.-M. STRELCYN) 1.
 
 Introduction and Formulation of the Results
 
 157
 
 2.
 
 Preliminaries
 
 162
 
 3.
 
 Construction of the Partition
 
 4.
 
 Computation of Entropy
 
 n
 
 167
 
 175
 
 IV
 
 PART IV.
 
 THE ESTIMATION OF ENTROPY FROM ABOVE THROUGH LYAPUNOV CHARACTERISTIC EXPONENTS		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	