Lifting Modules Supplements and Projectivity in Module Theory
Extending modules are generalizations of injective modules and, dually, lifting modules generalize projective supplemented modules. There is a certain asymmetry in this duality. While the theory of extending modules is well documented in monographs and te
- PDF / 2,995,352 Bytes
- 403 Pages / 482.4 x 680.4 pts Page_size
- 79 Downloads / 223 Views
		    $GYLVRU\(GLWRULDO%RDUG /XLJL$PEURVLR6FXROD1RUPDOH6XSHULRUH3LVD  /HRQLG%XQLPRYLFK*HRUJLD,QVWLWXWHRI7HFKQRORJ\$WODQWD  %HQRvW3HUWKDPH(FROH1RUPDOH6XSpULHXUH3DULV  *HQQDG\6DPRURGQLWVN\&RUQHOO8QLYHUVLW\5KRGHV+DOO  ,JRU6KSDUOLQVNL0DFTXDULH8QLYHUVLW\1HZ6RXWK:DOHV  :ROIJDQJ6SU|VVLJ78%HUJDNDGHPLH)UHLEHUJ 
 
  &- #LARK 4ITELEIINDD
 
 
 
 %LUNKlXVHU9HUODJ %DVHO%RVWRQ%HUOLQ
 
  &- #LARK 4ITELEIINDD
 
 
 
 $XWKRUV -RKQ&ODUN 'HSDUWPHQWRI0DWKHPDWLFVDQG6WDWLVWLFV 8QLYHUVLW\RI2WDJR 32%R[ 'XQHGLQ 1HZ=HDODQG HPDLOMFODUN#PDWKVRWDJRDFQ]
 
 1DUD\DQDVZDPL9DQDMD 'HSDUWPHQWRI0DWKHPDWLFV 8QLYHUVLW\RI0XPEDL 9LG\DQDJDUL0DUJ 0XPED\ ,QGLD HPDLOYDQDMDQDUD\DQDVZDPL#JPDLOFRP
 
 &KULVWLDQ/RPS 'HSDUWDPHQWRGH0DWHPiWLFD3XUD )DFXOGDGHGH&LrQFLDV 8QLYHUVLGDGHGR3RUWR 5XD&DPSR$OHJUH 3RUWR 3RUWXJDO HPDLOFORPS#IFXSSW
 
 5REHUW:LVEDXHU ,QVWLWXWHRI0DWKHPDWLFV +HLQULFK+HLQH8QLYHUVLW\'VVHOGRUI 8QLYHUVLWlWVVWU 'VVHOGRUI *HUPDQ\ HPDLOZLVEDXHU#PDWKXQLGXHVVHOGRUIGH
 
 0DWKHPDWLFDO6XEMHFW&ODVVL¿FDWLRQ''''' //3366
 
 $&,3FDWDORJXHUHFRUGIRUWKLVERRNLVDYDLODEOHIURPWKH /LEUDU\RI&RQJUHVV:DVKLQJWRQ'&86$ %LEOLRJUDSKLFLQIRUPDWLRQSXEOLVKHGE\'LH'HXWVFKH%LEOLRWKHN 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD¿H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKH,QWHUQHWDWKWWSGQEGGEGH!
 
 ,6%1%LUNKlXVHU9HUODJ%DVHO±%RVWRQ±%HUOLQ 7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUW RIWKHPDWHULDOLVFRQFHUQHGVSHFL¿FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVH RILOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR¿OPVRULQRWKHUZD\V DQGVWRUDJHLQGDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHU PXVWEHREWDLQHG %LUNKlXVHU9HUODJ32%R[&+%DVHO6ZLW]HUODQG 3DUWRI6SULQJHU6FLHQFH%XVLQHVV0HGLD &RYHUGHVLJQ%LUJLW%ORKPDQQ=ULFK6ZLW]HUODQG 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&)f 3ULQWHGLQ*HUPDQ\ ,6%1 H,6%1 ,6%1 ZZZELUNKDXVHUFK
 
  &- #LARK 4ITELEIINDD
 
 
 
 Contents Preface
 
 vii
 
 Introduction
 
 ix
 
 Notation
 
 xiii
 
 1 Basic notions 1 Preliminaries . . . . . . . . . . . . . . . . . 2 Small submodules and the radical . . . . . . 3 Cosmall inclusions and coclosed submodules 4 Projectivity conditions . . . . . . . . . . . . 5 Hollow dimension of modules . . . . . . . . 2 Preradicals and torsion theories 6 Preradicals and colocalisation . . . . . . . 7 Torsion theories . . . . . . . . . . . . . . . 8 Torsion theories related to small modules 9 Corational modules . . . . . . . . . . . . . 10 Proper		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	