m6A modification in RNA: biogenesis, functions and roles in gliomas

  • PDF / 1,553,929 Bytes
  • 16 Pages / 595.276 x 790.866 pts Page_size
  • 20 Downloads / 179 Views

DOWNLOAD

REPORT


(2020) 39:192

REVIEW

Open Access

m6A modification in RNA: biogenesis, functions and roles in gliomas Yuhao Zhang1†, Xiuchao Geng2†, Qiang Li3, Jianglong Xu1, Yanli Tan4, Menglin Xiao1, Jia Song5, Fulin Liu6*, Chuan Fang1* and Hong Wang1,2,7*

Abstract The chemical modification of RNA is a newly discovered epigenetic regulation mechanism in cells and plays a crucial role in a variety of biological processes. N6-methyladenine (m6A) mRNA modification is the most abundant form of posttranscriptional RNA modification in eukaryotes. Through the development of m6A RNA sequencing, the relevant molecular mechanism of m6A modification has gradually been revealed. It has been found that the effect of m6A modification on RNA metabolism involves processing, nuclear export, translation and even decay. As the most common malignant tumour of the central nervous system, gliomas (especially glioblastoma) have a very poor prognosis, and treatment efficacy is not ideal even with the application of high-intensity treatment measures of surgery combined with chemoradiotherapy. Exploring the origin and development mechanisms of tumour cells from the perspective of tumour biogenesis has always been a hotspot in the field of glioma research. Emerging evidence suggests that m6A modification can play a key role in gliomas through a variety of mechanisms, providing more possibilities for early diagnosis and targeted therapy of gliomas. The aim of the present review is to focus on the research progress regarding the association between m6A modification and gliomas. And to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for the molecular mechanism, early diagnosis, histologic grading, targeted therapy and prognostic evaluation of gliomas. Keywords: m6A modification, RNA, Central nervous system, Glioma, Glioblastoma, GBM, Tumourigenesis

Background Gliomas are the most common malignancy in the central nervous system. Glioblastoma (GBM) has the highest malignancy rate and account for 50% of all brain tumours. The average survival time of patients with GBM is only 14.6 months [1]. GBM originate from poorly differentiated glial cells and have the characteristics of nuclear atypia, cellular polymorphism, and a high * Correspondence: [email protected]; [email protected]; [email protected] † Yuhao Zhang and Xiuchao Geng contributed equally to this work. 6 Office of Academic Research, Affiliated Hospital of Hebei University, 071000 Baoding, China 1 Department of Neurosurgery, Affiliated Hospital of Hebei University, 071000 Baoding, China Full list of author information is available at the end of the article

degree of mitotic activity. Given the aggressiveness of GBM, surgical resection to resolve all intracranial lesions in clinical practice is challenging. Therefore, most patients receive radiotherapy and temozolomide (TMZ) combined with chemotherapy after surgery. Although the treatment intensity is very high, the outcomes are still not sati