Manifolds and Modular Forms
- PDF / 15,199,045 Bytes
- 216 Pages / 439.37 x 666.142 pts Page_size
- 18 Downloads / 272 Views
Friedrich Hirzebruch · Thomas Berger Rainer Jung
Manifolds and modular forms
Friedrich Hirzebruch Thomas ßerger Rainer Jung
Manifolds and Modular Forms
Asped~f
tv\othemotic~
Edited by Klos Diederich Vol. E 1:
G. Hector/U. Hirsch: Introduction to the Geometry of Foliations, Part A
Vol. E2:
M. Knebuschl M. Koister: Wittrings
Vol. E3:
G. Hectorl U. Hirsch: Introduction to the Geometry of Foliations, Part B
Vol. E4:
M. Laska: Elliptic Curves of Number Fields with Prescribed Reduction Type lout of printl
Vol. E5:
P. Stiller: Automorphic Forms and the Picard Number of an Elliptic Surface
Vol. E6:
G. Faltings/G. Wüstholz et al.: Rational Points*
Vol. E7:
W. StoII: Value Distribution Theory for Meromorphic Maps
Vol. E8:
W. von Wahl: The Equations of Navier-Stokes and Abstract Parabolic Equations lout of printl
Vol. E9:
A. Howardl P.-M. Wong (Eds.l: Contributions to Severol Complex Variables
Vol. E 10: A. J. Tromba (Ed.l: Seminar of New Results in Nonlinear Partial Differential Equations* Vol. E 11:
M. Yoshida: Fuchsian Differential Equations*
Vol. E 12:
R. Kulkarni, U. Pinkall (Eds.l: Conformal Geometry*
Vol. E 13: Y. Andre: G-Functions and Geometry* Vol. E 14:
U. Cegrell: Capacities in Complex Analysis
Vol. E 15: J -Po Serre: Lectures on the Mordell-Weil Theorem Vol. E 16:
K.lwasaki/H. KimurolS. Shimomuro/M. Yoshida: From Gauss to Painleve
Vol. E 17:
K. Diederich (Ed.l: Complex Analysis
Vol. E 18: W W.
J. Hulsbergen: Conjectures in Arithmetic Aigebraic Geometry
Vol. E 19:
R. Racke: Lectures on Nonlinear Evolution Equations
Vol. E20:
F. Hirzebruch, Th. Berger, R. Jung: Manifolds and Modular Forms*
*A Publicatian of the Max-Planck-Institut für Mathematik, Bonn
Volumes of the German-Ianguage subseries 'Äspekte der Mathematik" are listed at the end of the book.
Friedrich Hirzebruch Thomas ßerger Rainer Jung
Manifolds and Modular Forms Translated by Peter S. Landweber A Publication of the Max-Planck-Institut für Mathematik, Bonn
aI vleweg
Professor Dr. Friedrich Hirzebruch, Thomas Berger, and Rainer Jung Max-Planck-Institut für Mathematik Gottfried-Claren-Str.26 5300 Bonn 3 Germany
ISBN 978-3-528-06414-3
ISBN 978-3-663-14045-0 (eBook)
DOI 10.1007/978-3-663-14045-0
Appendix III: El/iptic genera 01 level N lor complex manijolds reprinted with perrnission of Kluwer Academic Publishers Mathematical Subject Classification: 57-02, llFll, 33C45, 33E05, 55N22, 55RlO, 57R20, 58GlO All rights reserved © Springer Fachmedien Wiesbaden, 1992 Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, BraunschweiglWiesbaden in 1992.
No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanicaJ, photocopying or otherwise, without prior permission of the copyright holder.
Cover design: Wolfgang Nieger, Wiesbaden Printed on acid-free paper
Preface During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". Iwanted to develop the theory of "Elliptic Genera" and to leam it mysel
Data Loading...