Manifolds and Modular Forms
- PDF / 15,199,045 Bytes
- 216 Pages / 439.37 x 666.142 pts Page_size
- 20 Downloads / 326 Views
		    Friedrich Hirzebruch · Thomas Berger  Rainer Jung
 
 Manifolds and modular forms
 
 Friedrich Hirzebruch Thomas ßerger Rainer Jung
 
 Manifolds and Modular Forms
 
 Asped~f
 
 tv\othemotic~
 
 Edited by Klos Diederich Vol. E 1:
 
 G. Hector/U. Hirsch: Introduction to the Geometry of Foliations, Part A
 
 Vol. E2:
 
 M. Knebuschl M. Koister: Wittrings
 
 Vol. E3:
 
 G. Hectorl U. Hirsch: Introduction to the Geometry of Foliations, Part B
 
 Vol. E4:
 
 M. Laska: Elliptic Curves of Number Fields with Prescribed Reduction Type lout of printl
 
 Vol. E5:
 
 P. Stiller: Automorphic Forms and the Picard Number of an Elliptic Surface
 
 Vol. E6:
 
 G. Faltings/G. Wüstholz et al.: Rational Points*
 
 Vol. E7:
 
 W. StoII: Value Distribution Theory for Meromorphic Maps
 
 Vol. E8:
 
 W. von Wahl: The Equations of Navier-Stokes and Abstract Parabolic Equations lout of printl
 
 Vol. E9:
 
 A. Howardl P.-M. Wong (Eds.l: Contributions to Severol Complex Variables
 
 Vol. E 10: A. J. Tromba (Ed.l: Seminar of New Results in Nonlinear Partial Differential Equations* Vol. E 11:
 
 M. Yoshida: Fuchsian Differential Equations*
 
 Vol. E 12:
 
 R. Kulkarni, U. Pinkall (Eds.l: Conformal Geometry*
 
 Vol. E 13: Y. Andre: G-Functions and Geometry* Vol. E 14:
 
 U. Cegrell: Capacities in Complex Analysis
 
 Vol. E 15: J -Po Serre: Lectures on the Mordell-Weil Theorem Vol. E 16:
 
 K.lwasaki/H. KimurolS. Shimomuro/M. Yoshida: From Gauss to Painleve
 
 Vol. E 17:
 
 K. Diederich (Ed.l: Complex Analysis
 
 Vol. E 18: W W.
 
 J. Hulsbergen: Conjectures in Arithmetic Aigebraic Geometry
 
 Vol. E 19:
 
 R. Racke: Lectures on Nonlinear Evolution Equations
 
 Vol. E20:
 
 F. Hirzebruch, Th. Berger, R. Jung: Manifolds and Modular Forms*
 
 *A Publicatian of the Max-Planck-Institut für Mathematik, Bonn
 
 Volumes of the German-Ianguage subseries 'Äspekte der Mathematik" are listed at the end of the book.
 
 Friedrich Hirzebruch Thomas ßerger Rainer Jung
 
 Manifolds and Modular Forms Translated by Peter S. Landweber A Publication of the Max-Planck-Institut für Mathematik, Bonn
 
 aI vleweg
 
 Professor Dr. Friedrich Hirzebruch, Thomas Berger, and Rainer Jung Max-Planck-Institut für Mathematik Gottfried-Claren-Str.26 5300 Bonn 3 Germany
 
 ISBN 978-3-528-06414-3
 
 ISBN 978-3-663-14045-0 (eBook)
 
 DOI 10.1007/978-3-663-14045-0
 
 Appendix III: El/iptic genera 01 level N lor complex manijolds reprinted with perrnission of Kluwer Academic Publishers Mathematical Subject Classification: 57-02, llFll, 33C45, 33E05, 55N22, 55RlO, 57R20, 58GlO All rights reserved © Springer Fachmedien Wiesbaden, 1992 Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, BraunschweiglWiesbaden in 1992.
 
 No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanicaJ, photocopying or otherwise, without prior permission of the copyright holder.
 
 Cover design: Wolfgang Nieger, Wiesbaden Printed on acid-free paper
 
 Preface During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". Iwanted to develop the theory of "Elliptic Genera" and to leam it mysel		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	