Mathematical Methods and Modelling in Hydrocarbon Exploration and Production
Hydrocarbon exploration and production incorporate great technology challenges for the oil and gas industry. In order to meet the world's future demand for oil and gas, further technological advance is needed, which in turn requires research across multip
- PDF / 19,483,907 Bytes
- 451 Pages / 439.37 x 666.142 pts Page_size
- 12 Downloads / 330 Views
7
Armin Iske Trygve Randen Editors
Mathematical Methods and Modelling in Hydrocarbon Exploration and Production
1 23
Editors Dr. Armin Iske University of Leicester Department of Mathematics University Road Leicester, LE1 7RH, United Kingdom Email: [email protected] Dr. Trygve Randen Schlumberger Stavanger Research Risabergveien 3 4068 Stavanger, Norway Email: [email protected]
Library of Congress Control Number: 2004114140
Mathematics Subject Classification (2000): 65M25, 65M12, 65M50, 76M25, 76M28, 76T99, 65D15, 65D05, 65D07, 65D17 ISBN 3-540-22536-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typeset by the authors using a Springer TEX macro-package Cover design: design & production GmbH, Heidelberg Printed on acid-free paper 46/3142LK - 5 4 3 2 1 0
Preface
Fossil fuels, including oil and gas, store a part of the energy which the earth has received from the sun during the last several hundred million years. These days, oil and gas account for around 64 % of the total world energy consumption. Despite the efforts in developing new renewable energy sources, oil and gas will continue to play a major role in meeting the world’s ever increasing energy demand for the next few decades. Moreover, oil and gas are expected to remain the most cost effective and the most convenient sources of energy that we have at our disposal. The required exploration and production of hydrocarbons, however, incorporate great technological challenges for the oil and gas industry. Indeed, about 70 % of today’s oil and gas production rate comes from hydrocarbon fields that are more than 30 years old. But several of these fields are exhibiting a significant production decline. In order to meet the world’s future demand for oil and gas, further technological advances are essentially needed, where new developments should aim at efficiency and accuracy in sub-surface mapping, monitoring of reservoir depletion, and numerical simulation of production scenarios. This requires research across multiple disciplines, including mathematics, geophysics, geology, petroleum engineering, signal processing, and computer science.
Data Loading...