Mesenchymal stromal cells for osteonecrosis
- PDF / 745,526 Bytes
- 10 Pages / 595.276 x 790.866 pts Page_size
- 57 Downloads / 231 Views
Journal of Translational Medicine Open Access
REVIEW
Mesenchymal stromal cells for osteonecrosis S. Elgaz1 , H. Bonig2 and P. Bader1*
Abstract Osteonecrosis (ON) is an acquired debilitating skeletal disorder, which is caused by a multitude of traumatic and non-traumatic etiological factors. Vascular damage, mechanical stress and increased intraosseous pressure have been discussed as contributors to ON. The optimal treatment of ON remains to be determined, since the current gold standard, core decompression, is insufficiently effective. Specific properties of mesenchymal stromal cells (MSCs) provide the rationale for their assessment in advanced stages of ON: Osteoinductive potential has been demonstrated and MSC preparations of suitable quality for use as medicinal products have been developed. Here we review the scant information on the use of allogeneic or autologous MSCs in advanced ON as well as potentially supportive data from pre-clinical studies with autologous bone marrow mononuclear cells (auto BM-MNCs), which have been studied quite extensively and the presumed therapeutic effect of which was attributed to the rare MSCs contained in these cell products. Outcomes in clinical trials with MSCs and auto-BM-MNCs remain preliminary and non-definitive, at best promising, with respect to their pharmacological effect. Clearly, though, the application of any of these cell therapies was technically feasible and safe in that it was associated with low complication rates. The heterogeneity of cell type and source, study protocols, cell manufacturing, cell properties, cell doses and surgical techniques might contribute to inconsistent results. Keywords: Mesenchymal stromal cells (MSC), Osteonecrosis, Cell-based therapies Background Osteonecrosis (ON), also known as avascular necrosis, is a multifactorial bone disorder that is defined to be debilitating, progressive and refractory [1]. The lesions are prone to progression with collapse of mechanically encumbered subchondral bone and secondary osteoarthritis [2]. Numerous conditions and therapeutic interventions have been associated with the development of ON. Direct damage to bone vasculature, bone or marrow elements is possible. However, the precise pathological mechanism leading to osteonecrosis is not fully understood. Impairment of bone perfusion in traumatic and non-traumatic condition results in the death of bone and marrow cells and subsequent mechanical failure [3].
*Correspondence: [email protected] 1 Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Theodor‑Stern‑Kai 7, 60590 Frankfurt am Main, Germany Full list of author information is available at the end of the article
Reports concerning risk factors for ON largely originate from observational studies [4]. Causes include vascular compromise due to direct trauma, intravascular occlusion in the case of sickle cell aggregations, clots and lipid thrombi, intraosseous extravascular compression due to lipid deposition and adipocyt
Data Loading...