Microfluidic Raman Spectroscopy for Bio-chemical Sensing and Analysis

The detection and analysis of bio-chemical analytes are important in the fields of personal healthcare, drug development, and environmental science, among others. The field of microfluidics aims to realize portable devices which can perform fast and sensi

  • PDF / 563,361 Bytes
  • 22 Pages / 439.37 x 666.142 pts Page_size
  • 85 Downloads / 188 Views

DOWNLOAD

REPORT


Abstract The detection and analysis of bio-chemical analytes are important in the fields of personal healthcare, drug development, and environmental science, among others. The field of microfluidics aims to realize portable devices which can perform fast and sensitive bioanalyte detection with minimal sample preparation. Raman spectroscopy is a powerful tool for analyte detection owing to its high specificity and its ability for multi-component detection in an analyte. Combining microfluidics with Raman spectroscopy would help achieve miniaturized analytical devices that may provide rich information about a given analyte. However, the low cross-section of Raman process demands special geometries to achieve such a convergence. The majority of the previous embodiments were restricted to free-space geometry, limiting portability. However, in recent studies, fiber-based Raman detection system incorporated in microfluidics offers the opportunity to develop portable optofluidic bioanalyte detection devices. Here, we review various approaches used for using Raman spectroscopy in microfluidics for analyte detection, and various analytical approaches that could be used to enhance the detection sensitivity of Raman spectroscopy-based detection. This is followed by a detailed discussion about the fiber-based optofluidic Raman detection systems. Keywords Analyte detection • Fiber Raman probe • Microfluidics • Raman spectroscopy • Soft lithography

P.C. Ashok (*) • K. Dholakia SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St. Andrews, Fife, KY16 9SS Scotland, UK e-mail: [email protected] W. Fritzsche and J. Popp (eds.), Optical Nano- and Microsystems for Bioanalytics, Springer Series on Chemical Sensors and Biosensors (2012) 10: 247–268 DOI 10.1007/978-3-642-25498-7_9, # Springer-Verlag Berlin Heidelberg 2012

247

248

P.C. Ashok and K. Dholakia

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 History of Microfluidic Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Initial Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Raman Spectroscopy to Probe Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Bio-chemical Detection Using SERS in Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Raman Spectroscopic Probing of Microdroplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Microfluidic Raman spectroscopy in Cell Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Microfluidic Raman Spectroscopy: Stat