Modern Aspects of Electrochemistry

The present collection of articles follows the arrangement used in previous volumes. Solutions are discussed first, surfaces and double­ layers second, electrode kinetics third, and then the applied subjects. The introduction of spectroscopic methods to e

  • PDF / 38,297,732 Bytes
  • 461 Pages / 396.85 x 612.283 pts Page_size
  • 33 Downloads / 225 Views

DOWNLOAD

REPORT


LIST OF CONTRIBUTORS B. G. BAKER School of Physical Sciences Flinders University South Australia ROBERT O. BECKER Veterans Administration Hospital Syracuse, New York and Department of Orthopedic Surgery Upstate Medical Center Syracuse, New York M. W. BREITER General Electric Company Research and Development Center Schenectady, New York E. von GOLDAMMER Lehrstuhl f. Physik, Fachbereich Biologie UniversiUit Regensburg Regensburg, Germany DEREK P. GREGORY Institute of Gas Technology Chicago, Illinois D.F.A.KOCH Division of Mineral Chemistry Commonwealth Scientific and Industrial Research Organization Melbourne, Australia KARL V. KORDESCH Union Carbide Corporation Cleveland, Ohio ARTHUR A. PILLA Electrochemistry Laboratory ESB Technology Center Yardley, Pennsylvania and Bioelectrochemistry Laboratory Columbia University Medical Center New York, New York

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.

MODERN ASPECTS OF "'" ELECTROCHEMISTRY No. 10 Edited by

J. O'M. BOCKRIS

School of Physical Sciences The Flinders University Ade.la.id.e South Australia

and

B. E. CONWAY

Department of Chemistry University of Ottawa Ottawa, Canada

PLENUM PRESS • NEW YORK AND LONDON

The Library of Congress cataloged the first volume of this title as follows:

Modem aspects of electrochemistry. no. [1)Washington, Butterworths, 1954v. 1IIua. 23 em. No. 1-2 I..ued 88 Modern apects Bm'lea ot ~. Edltortl: no. 1J. Bockrla (with B. E. Conway, no. 3) Imprint varies: no. 1, New York, A.cademlc PreIIII.-No. 2, London, Butterwortha.

1. Electrochemlstry- t) have an electric quadrupole moment (Table 1).

""",: ,k'

COIL ~

SA"'"

)

~z '-+-I~--I

--r/ TRANSMITTER COIL H(t)

Figure 1. A schematic experimental arrangement for NMR experimentation. The coordinate system XYZ is the laboratory fixed frame.

II. A Nuclear Magnetic Resonance Experiment

3

Table 1 Properties of Some Nucleia Natural abundance Nucleus

%

'H 2H 7Li 23Na 39K 85Rb 87Rb 133CS 9Be 25Mg 27Al 69Ga 7lGa 115ln 19F 35Cl 37C1 79Br 8lBr 127 J 14N 17 0

99.985 0.Q15 92.7 100 93.2 72.8 27.2 100 100 10.1 100 60.1 39.9 95.5 100 75.4 24.6 50.6 49.4 100 99.62 0.04

Gyromagnetic ratio, yI2T[, HzG- 1

Quantum number, I I

4257 653.5 1655 1126.7 198.7 411.3 1397 561.7 598.7 260.6 1110 1023 1299 933.1 4007 417.2 347.4 1070 1153 856.5 307.7 577.2

2

1

l.

2 3 2 3 2 5 2 3 2 7 2 3 2 5 2 5

2

3 2 3 2 9 2 I 2

3 3 2 3 2 3 2 5 2

2

1

5

2

Quadrupole moment x 10- 24 cm 2

0.00274 -0.044 0.11 0.14

OJ

0.14 -0.003 0.02 0.22 0.156 0.18 0.11 0.76 -0.0798 -0.0621 0.36 0.28 -0.78 0.02 -0.004

aFrom Ref. 12.

A nuclear spin system (e.g., ansmg from the protons in a sample of liquid chloroform, CHCI 3 ) is described quantum mechanically by the following Hamilton operator

£ = £0 + £l(t)

(1)

where £0 stands for all possible time-independent interactions between the nuclear spins and, for example, the