Modular Forms on Half-Spaces of Quaternions
- PDF / 11,914,291 Bytes
- 217 Pages / 468 x 684 pts Page_size
- 23 Downloads / 326 Views
		    1143 Aloys Krieg
 
 Modular Forms on Half-Spaces of Quaternions
 
 Springer-Verlag Berlin Heidelberg New York Tokyo
 
 Author
 
 Aloys Krieg Mathematisches Institut der Westfalischen Wilhelms-Universitat Einsteinstr. 62, 4400 Munster, Federal Republic of Germany
 
 Mathematics Subject Classification (1980): 10020 ISBN 3-540-15679-8 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15679-8 Springer-Verlag New York Heidelberg Berlin Tokyo
 
 Library of Congress Cataloging-in-Publication Data. Krieg, Aloys, 1955 - Modular forms on halfspaces of quaternions. (Lecture notes in mathematics; 1143) Bibliography: p. Includes index. 1. Forms, Modular. 2. Quaternions. I. Title II. Series: Lecture notes in mathematics (SpringerVerlag; 1143. QA.L28 no. 1143 520 s 85-17284 [QA243] [512'.522] ISBN 0-387-15679-8 (U.S.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210
 
 Table of contents v
 
 Introduction Notations
 
 XIII
 
 Chapter I
 
 Integral and Hermitian matrices
 
 1
 
 §1 §2 §3 §4 §5
 
 Orderings
 
 2
 
 Hermitian matrices
 
 14 20
 
 MINKOWSKI's reduction theory
 
 28
 
 Applications of reduction theory
 
 37
 
 Chapter II
 
 Modular group and fundamental domain
 
 §1 §2 §3 §4
 
 Symplectic group and half-space
 
 42 43 54
 
 Integral matrices
 
 Modular group The fundamental domain
 
 F(n;F)
 
 58
 
 Congruence subgroups
 
 67
 
 Chapter III
 
 Modular forms
 
 71
 
 §1 §2 §3
 
 Analytic class invariants
 
 72
 
 The vector space of modular forms
 
 83
 
 Modular forms with respect to congruence 92
 
 subgroups
 
 §4
 
 Relations between SIEGEL modular forms, Hermitian modular forms and modular forms
 
 96
 
 of quaternions
 
 99
 
 Chapter IV
 
 Theta-series
 
 §1 §2 §3
 
 Elementary properties of theta-series Theta-series as modular forms
 
 100 110
 
 Theta-series with respect to even quadratic forms
 
 117
 
 §4
 
 Singular modular forms
 
 126
 
 Chapter V
 
 EISENSTEIN- and POINCARE -series
 
 136
 
 §1 §2 §3 §4 §5
 
 Integrals
 
 137
 
 EISENSTEIN-series
 
 145
 
 ,
 
 POINCARE -series
 
 157
 
 Metrization
 
 166
 
 Algebraical independence
 
 174
 
 IV
 
 Chapter VI §1 §2 §3
 
 Modular functions The field of modular functions Modular functions with respect to congruence subgroups and symmetric modular functions
 
 182 183 189
 
 Relations between SIEGEL modular functions, Hermitian modular functions and modular functions of quaternions
 
 192
 
 Bibliography
 
 196
 
 List of symbols
 
 200
 
 Index
 
 202
 
 Introduction The mathematical background
 
 The theory of elliptic modular forms and functions developed from 19 t h century. One pro-
 
 the investigation of elliptic functions in the ceeds from the upper half H:={z=x+iyElt;y>O}
 
 (1)
 
 in
 
 It
 
 By me		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	